
OS03: Threads
*

Based on Chapter 2 of [Hai19]

Jens Lechtenbörger

Computer Structures and Operating Systems 2023

1 Introduction

1.1 OS Plan
� OS Overview (Wk 20)

� OS Introduction (Wk 21)

� Interrupts and I/O (Wk 21)

� Threads (Wk 23)

� Thread Scheduling (Wk 24)

� Mutual Exclusion (MX) (Wk 25)

� MX in Java (Wk 25)

� MX Challenges (Wk 25)

� Virtual Memory I (Wk 26)

� Virtual Memory II (Wk 26)

� Processes (Wk 27)

� Security (Wk 28)

Figure 1: OS course plan, summer 2022

1.2 Today's Core Questions

� What exactly are threads?

� Why and for what are they used?

� How can I inspect them?

� How are they created in Java?

� What impact does blocking or non-blocking I/O have on the use of
threads?

� How does switching between threads work?
*This PDF document is an inferior version of an OER HTML page; free/libre Org mode

source repository.

1

https://oer.gitlab.io/OS/Operating-Systems-Threads.html
https://gitlab.com/oer/OS
https://gitlab.com/oer/OS


1.3 Learning Objectives

� Explain thread concept, thread switching, and multitasking

� Including states (after upcoming presentation)

� Explain distinctions between threads and processes

� Explain advantages of a multithreaded organization in structuring
applications and in performance

� Inspect threads on your system

� Create threads in Java

� Discuss di�erences between and use cases for blocking and non-blocking
I/O

1.4 Retrieval practice

1.4.1 Informatik 1

What are interfaces and classes in Java, what is �this�?
If you are not certain, consult a textbook; these self-check questions and

preceding tutorials may help:

� https://docs.oracle.com/javase/tutorial/java/concepts/QandE/questions.

html

� https://docs.oracle.com/javase/tutorial/java/IandI/QandE/interfaces-

questions.html

1.4.2 Recall: Stack

� Stack = Classical data structure (abstract data type)

� LIFO (last in, �rst out) principle

� See Appendix A in [Hai19] if necessary

� Two elementary operations

� Stack.Push(o): place object o on top of Stack

� Stack.Pop(): remove object from top of Stack and return it

� Supported in machine language of most processors (not in Hack, though)

� Typically (e.g., x86), stack grows towards smaller addresses

* Next object pushed gets smaller address than previous one

* (Di�erently from stack of VM for Hack platform)

1.4.3 Drawing on Stack

Warning! External �gure not included: �What's the stack?� © 2016 Julia
Evans, all rights reserved from julia's drawings. Displayed here with personal
permission.
(See HTML presentation instead.)

2

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html
https://docs.oracle.com/javase/tutorial/java/concepts/QandE/questions.html
https://docs.oracle.com/javase/tutorial/java/concepts/QandE/questions.html
https://docs.oracle.com/javase/tutorial/java/IandI/QandE/interfaces-questions.html
https://docs.oracle.com/javase/tutorial/java/IandI/QandE/interfaces-questions.html
https://drawings.jvns.ca/stack/


1.4.4 Previously on OS . . .

� What is a thread? Warning! External �gure not included: �Threads!�
© 2016 Julia Evans, all rights reserved from julia's drawings. Displayed
here with personal permission.
(See HTML presentation instead.)

� What are multitasking and scheduling?

1.4.5 Recall: Blocking vs Non-Blocking I/O

� For blocking as well as non-blocking I/O, thread invokes system call

� OS is responsible for I/O

� Blocking I/O: OS initiates I/O and schedules di�erent thread for exe-
cution

� Calling thread is blocked for duration of I/O

� After I/O is �nished, OS un-blocks calling thread

* Un-blocked thread to be scheduled later on, with result of I/O
system call

� Non-blocking I/O: OS initiates I/O and returns (incomplete) result to
calling thread

Table of Contents

2 Threads

2.1 Threads and Programs

� Program vs thread

� Program contains instructions to be executed on CPU

� OS schedules execution of programs

* By default, program execution starts with one thread

· Thread = unit of OS scheduling = independent sequence of
computational steps

* Programmer determines how many threads are created

· (OS provides system calls for thread management, Java an
API)

� Simple programs are single-threaded

� More complex programs can be multithreaded

* Multiple independent sequences of computational steps

· E.g., an online game: di�erent threads for game AI, GUI
events, network handling

* Multi-core CPUs can execute multiple threads in parallel

3

https://drawings.jvns.ca/threads/


2.2 Thread Creation and Termination

� Di�erent OSes and di�erent languages provide di�erent APIs to manage
threads

� Thread creation

* Following example: Java

* [Hai19]: Java and POSIX threads

� Thread termination

* API-speci�c functions to end/destroy threads

* Implicit termination when �last� instruction ends

· E.g., in Java when methods main() (for main thread) or
run() (for other threads) end (if at all)

2.3 Thread Terminology

� Parallelism vs concurrency

� Thread preemption

� I/O bound vs CPU bound threads

2.3.1 Parallelism

� Parallelism = simultaneous execution

� E.g., multi-core

� Potential speedup for computations!

* (Limited by Amdahl's law)

� Note

� Processors contain more and more cores

� Individual cores do not become much faster any longer

* Recall CS part about Moore's law

� Consequence: Need parallel programming to take advantage of cur-
rent hardware

2.3.2 Concurrency

� Concurrency is more general term than parallelism

� Concurrency includes

* Parallel threads (on multiple CPU cores)

Figure 2: Figure under CC0 1.0

4

https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Moore%27s_law
https://gitlab.com/oer/figures/blob/master/OS/3-threads-parallel.svg
https://creativecommons.org/publicdomain/zero/1.0/


· (Executing di�erent code in general)

* Interleaved threads (taking turns on single CPU core)

· With gaps on single core!

Figure 3: Figure under CC0 1.0

� Challenges and solutions for concurrency apply to parallel and inter-
leaved executions

* Topics covered in upcoming presentations (mutual exclusion (MX),
MX in Java, MX challenges)

2.3.3 Thread Preemption

� Preemption = temporary removal of thread from CPU by OS

� Before thread is �nished (with later continuation)

* To allow others to continue after scheduling decision by OS

� Typical technique in modern OSs

* Run lots of threads for brief intervals per second; creates illusion
of parallel executions, even on single-core CPU

� Later slides: Cooperative vs preemptive multitasking

� Upcoming presentation: Thread scheduling

2.3.4 Thread Classi�cation

� I/O bound

� Threads spending most time submitting and waiting for I/O requests

� Run frequently by OS, but only for short periods of time

* Until next I/O operation

* E.g., virus scanner, network server (e.g., web, chat)

� CPU bound

� Threads spending most time executing code

� Run for longer periods of time

* Until preempted by scheduler

* E.g., graph rendering, compilation of source code, training for
deep learning

5

https://gitlab.com/oer/figures/blob/master/OS/3-threads-interleaved.svg
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Deep_learning


3 Java Threads

3.1 Threads in Java

� Threads are created from instances of classes implementing the Runnable
interface

1. Implement run() method

2. Create new Thread instance from Runnable instance

3. Invoke start() method on Thread instance

� Alternatives (beyond the scope of this course)

� Subclass of Thread (Thread implements Runnable)

* If more than run() overwritten

� java.util.concurrent.Executor

* With Callable<V>, Future<V> and service methods of Executor

· Worker Thread Pool

* Virtual threads

· Later slide with some ideas

Here you see one way for the creation of threads in Java with 3 basic steps. First, the
code to be executed by a thread is speci�ed by the method run() of the interface Runnable,
and a thread itself is represented as instance of a class that implements this interface.

Note that programmers do not call run() directly: Instead, step (2) requires to create an
instance of class Thread, which is then started in step (3) with method start(), which in turn
eventually calls run().

The next slide shows an example for these three steps.

3.2 Java Thread Example

public class Simpler2Threads { // Based on Fig. 2.3 of [Hai17]

// "Simplified" by removing anonymous class.

public static void main(String args[]){

Thread childThread = new Thread(new MyThread());

childThread.start();

sleep(5000);

System.out.println("Parent is done sleeping 5 seconds.");}

static void sleep(int milliseconds){

// Sleep milliseconds (blocked/removed from CPU).

try{ Thread.sleep(milliseconds); } catch(InterruptedException e){

// ignore this exception; it won't happen anyhow

}}}

class MyThread implements Runnable {

public void run(){

Simpler2Threads.sleep(3000);

System.out.println("Child is done sleeping 3 seconds.");

}}

6

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/Executor.html
https://download.java.net/java/early_access/jdk20/docs/api/java.base/java/util/concurrent/Executors.html#newVirtualThreadPerTaskExecutor()


Connecting Java threads to earlier topics, when you execute java, the OS creates a process
for the Java runtime. Within that process, one thread will be created to execute the main()

method. In addition, the runtime creates an implementation-speci�c number of threads for
Java management tasks. Such threads are not important for our purposes.

The program Simpler2Threads does not only run code in the main thread, but it is
multi-threaded, as start() is invoked on the new Thread instance childThread (and start()

automatically calls run() to execute the thread's code).
Importantly, the method sleep() used here involves a blocking system call to the OS,

essentially stating �please take me away for the speci�ed amount of milliseconds and give the
CPU to someone else�.

Which output do you expect at what points in time?

3.3 Self-Study Task: CPU Usage

This task is available for self-study in Learnweb.

� Compile and run the source code of Simpler2Threads and make sure that
you can explain its output. Maybe ask in Learnweb.

� In general, if a program behaves unexpectedly, a debugger helps to
understand what is happening when. Your favorite IDE probably
includes a debugger. Also, several Java implementations come with
a simple debugger called jdb, e.g., the OpenJDK tools. (The notes
on this slide contain sample commands for jdb.)

� jdb Simpler2Threads

� stop in Simpler2Threads.main

� run

� threads

� stop in MyThread.run

� step

� threads

4 Reasons for Threads

4.1 Main Reasons

� Resource utilization

� Keep most of the hardware resources busy most of the time, e.g.:

* While one thread is idle (e.g., waiting for external events such
as user interaction, disk, or network I/O), allow other threads to
continue

· Next slide

* Keep multiple CPU cores busy

· E.g., OS housekeeping such as zeroing of memory on second
core

� Responsiveness

� Use separate threads to react quickly to external events

* Think of game AI vs GUI

* Other example on later slide: Web server

� More modular design

7

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=68583#section-8
https://gitlab.com/oer/OS/-/blob/master/java/Simpler2Threads.java
https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=68583#section-8
http://openjdk.java.net/tools/


4.2 Interleaved Execution Example

Figure 4: �Interleaved execution example� by Jens Lechtenbörger under CC BY-
SA 4.0; SVG image refers to converted and cut parts of Figure 2.6 of a book by
Max Hailperin under CC BY-SA 3.0. From GitLab

This �gure illustrates the bene�t of improved resource utilization resulting from multithread-
ing, which leads to higher overall throughput. Consider two threads and their resource de-
mands, each taking 1h to �nish. The �rst thread, shown on the left, is I/O bound, in this
case a virus scanner, which uses the CPU only for brief periods of time, whereas it mostly
waits for new data to arrive from disk. In contrast, the other thread, shown to the right, is
CPU bound, performing complex graph rendering; it doesn't need the disk at all. Clearly, the
sequential execution of both threads, which takes 2h, is a waste of resources, namely a waste
of CPU time.

In fact, an OS that is equipped with a scheduling mechanism might be able to schedule
the 2nd thread whenever the 1st one is idle waiting for new data to arrive from disk. In that
case, both threads can be executed in an interleaved fashion on a single CPU core, keeping
the core busy all the time. In the example shown here, both threads now �nish after 1.5h.

Note that the total time of 1.5h is an arbitrary example, without underlying calculation.
The point is that idle times of the virus scanner can now be used for real work, which leads
to a total time of less than 2h. Of course, both threads could also �nish at di�erent points in
time (but earlier than 2h).

4.3 Example: Web Server

� Web server �talks� HTTP with browsers

� Simpli�ed

� Lots of browsers ask per GET method for various web pages

� Server responds with HTML �les

� How many threads on server side?

8

https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0206.pdf
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0206.pdf
https://creativecommons.org/licenses/by-sa/3.0/
https://gitlab.com/oer/figures/blob/master/OS/hail_f0206.pdf.svg


4.4 Single- vs Multithreaded Web Server

Figure 5: �Figure 2.5 of [Hai19]� by Max Hailperin under CC BY-SA 3.0; con-
verted from GitHub

This �gure illustrates a thought experiment.
Suppose that you implemented a web server using a single thread. When a browser

connects, it typically asks for a sequence of resources such as images, CSS, JavaScript, and
HTML �les. These resources need to be retrieved from disk and transmitted over the Internet,
before an entire page can be rendered by the browser. If the server processes this entire
sequence before turning to the next client, complex pages, network latency, and slow clients
will cause long delays for other clients. Consequently, web servers are not built this way.

At another extreme, which is also not used in practice for reasons to be discussed later, a
multithreaded server could create a new thread to handle each incoming request separately.
That way, requests can be processed in parallel or concurrently, which improves responsiveness
and resource usage. In particular, the server would no longer be slowed down by slow clients.

5 Thread Switching

5.1 Thread Switching for Multitasking

� With multiple threads, OS decides which to execute when → Scheduling
(later lecture)

� (Similar to machine scheduling for industrial production, which you
may know from operations management)

� Recall multitasking

* OS may use time-slicing to schedule threads for short intervals,
illusion of parallelism on single CPU core

� After that decision, a context switch takes place

� (Recall introduction and interrupts; now, as thread switch)

� Remove thread A from CPU

* Remember A's state (in TCB: instruction pointer, register
contents, stack, . . . )

� Dispatch thread B to CPU

* Restore B's state

Recall how code is executed on the CPU (e.g., with Hack). A special register, the pro-
gram counter, speci�es what instruction to execute next, and instructions may modify CPU
registers. You may think of one assembly language program as being executed in one thread.

9

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0205.pdf


Recall that with multitasking, the OS manages multiple threads and schedules them for
execution on CPU cores, usually with time-slicing.

If the time slice for thread A ends, A is usually in the middle of some computation. The
state of that computation is de�ned by the current value of the program counter, by values
stored in registers, and other information. To resume this computation later on, the OS needs
to save the state of thread A somewhere, before another thread B can be executed. Similarly,
thread B may be in the middle of its own computation, whose state was saved previously by
the OS.

The switch from thread A via the OS to thread B with saving of A's and restoring of
B's state is called a context switch. Subsequent slides provide more details how such context
switches happen.

5.1.1 Thread Switching with yield

In the following

� First, simpli�ed setting of voluntary switch from thread A to thread B

� Function switchFromTo() on next slide

* For details, see Sec. 2.4 in [Hai19]

� Leaving the CPU voluntarily is called yielding; yield() may really
be an OS system call

� Afterwards, the real thing: Preemption by the OS

5.2 Interleaved Instruction Sequence

Figure 6: �Interleaved execution of threads. Based on Figure 2.7 of book by
Max Hailperin, CC BY-SA 3.0.� by Jens Lechtenbörger under CC BY-SA 4.0;
from GitLab

5.3 Thread Control Blocks (TCBs)

� All threads share the same CPU registers

� Obviously, register values need to be saved somewhere to avoid in-
correct results when switching threads

10

https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://gitlab.com/oer/figures/blob/master/OS/3-interleaved-executions.svg


� Also, each thread has its own

* stack; current position given by stack pointer (SP)

* instruction pointer (IP) (program counter); where to execute
next machine instruction

� Besides: priority, scheduling information, blocking events (if any)

� OS uses block of memory for housekeeping, called thread control block
(TCB)

� One for each thread

* Storing register contents, stack pointer, instruction pointer, . . .

� Arguments of switchFromTo() are really (pointers to) TCBs

5.4 Cooperative Multitasking

� Approach based on switchFromTo() is cooperative

� Thread A decides to yield CPU (voluntarily)

* A hands over to B

� Disadvantages

� In�exible: A and B are hard-coded

� No parallelism, just interleaved execution

� What if A contains a bug and enters an in�nite loop?

� Advantages

� Programmed, so full control over when and where of switches

� Programmed, so usable even in restricted environments/OSs without
support for multitasking/preemption

5.5 Preemptive Multitasking

� Preemption: OS removes thread forcefully (but only temporarily) from
CPU

� Housekeeping on stacks to allow seamless continuation later on sim-
ilar to cooperative approach

� OS schedules di�erent thread for execution afterwards

� Additional mechanism: Timer interrupts

� OS de�nes time slice (quantum), e.g., 30ms

* Interrupt �res every 30ms

* Interrupt handler invokes OS scheduler to determine next thread

· Details in upcoming presentation

11



5.6 Multitasking Overhead

� OS performs scheduling, which takes time

� Thread switching creates overhead

� Minor sources: Scheduling costs, saving and restoring state

� Major sources: Recall cache pollution

* After a context switch, the CPU's cache quite likely misses nec-
essary data

· Necessary data needs to be fetched from RAM

* Accessing data in RAM takes hundreds of clock cycles

· See estimates on Stack Over�ow

6 Server Models

6.1 Server Models with Blocking I/O: Single-Threaded

� Single thread (left-hand side of Figure 2.5; thought experiment, not for
use)

Figure 7: �Figure 2.5 of [Hai19]� by Max Hailperin under CC BY-SA 3.0; con-
verted from GitHub

� Sequential processing of client requests

� Long idle time during I/O → Not suitable in practice

Recall Figure 2.5, where you saw that using a single thread to serve lots of clients may
lead to long delays.

Think of the thread as a single employee in a self-service restaurant, who always processes
each client entirely (e.g., order, cooking, payment) before turning to the next client.

6.2 Server Models with Blocking I/O: Multi-Threaded

� One thread (or process) per client connection

� Parallel processing of client connections

� No idle time for I/O (switch to di�erent client)

� Limited scalability (thousands or millions of clients?)

12

https://stackoverflow.com/questions/4087280/approximate-cost-to-access-various-caches-and-main-memory
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0205.pdf


* Creation of threads causes overhead

· Each thread allocates resources

* OS needs to identify �correct� thread for incoming data

� Worker Thread Pool as compromise

In a conceptually simple server model, a new thread is created to serve each incoming
connection. Thus, di�erent clients can be served in parallel, keeping all CPU cores busy (if
enough connections are active). Also, slow clients do not slow down other clients, and the OS
can take a thread waiting for I/O aside and allow another thread to execute instead. Think of
a hypothetical self-service restaurant, where each customer is served by their own employee.

However, each thread needs some resources (e.g., RAM) and needs to be managed by the
OS. Also, when data arrives in an ongoing connection, the OS �rst needs to identify the correct
thread to handle incoming data before then performing a context switch to the correct thread.
These types of overhead limit the scalability of this model, which is why the compromise of a
Worker Thread Pool exists, to be discussed later.

6.3 Server Models with Non-Blocking I/O

� Single thread

� Event loop, event-driven programming

� E.g., web servers such as lighttpd, nginx

� Finite automaton to keep track of state per client

� State of automaton records state of interaction

� Complex code

* See Google's experience mentioned in [Bar+17]

� Avoids overhead of context switches

� Scalable (may be combined with Worker Thread Pool)

Another option to implement servers lies in the use of non-blocking I/O operations, which
is used by web servers such as lighttpd or nginx. Here, a single thread serves lots of incoming
requests in an interleaved fashion.

Processing of a request starts as in any other model. When I/O is necessary, e.g., to
fetch HTML code from disk before network transfer, the thread executes a non-blocking
I/O operation. Thus, the OS does not take the thread aside (as it would for blocking I/O
operations) but immediately returns an incomplete result. (Think of you as thread in a self-
service restaurant. You place your order and receive some receipt or order number instead of
your meal.)

Hence, the thread sees that it should do something else for some time. So, the thread
remembers the state of the current interaction, typically in some �nite automaton, and contin-
ues to work on another request. (You might take the receipt in the self-service restaurant and
continue your work on a self-study task while your meal is prepared. In addition, employees
taking orders can again be perceived as threads with non-blocking calls into the kitchen; while
meals are prepared, employees turn to other customers.)

This model avoids the overhead of context switches as a single thread can continue with
100% CPU usage. (You do not just sit there, wasting your time, but you order, work on
exercises, eat, etc.)

Also, we can create one thread per CPU core for parallel processing with up to 100% CPU
utilization across all cores.

However, server code is complex and error prone. The research paper cited here includes
experiences at Google, stating that blocking �code is a lot simpler, hence easier to write, tune,
and debug.�

13

https://www.lighttpd.net/
https://www.nginx.com/


6.4 Worker Thread Pool

� Upon program start: Create set of worker threads

� Client requests received by dispatcher thread

� Requests recorded in to-do data structure

� Idle worker threads process requests

� Note

� Re-use of worker threads

� Limited resource usage

� How to tune for load?

* Dispatcher may be bottleneck

* If more client requests than worker threads, then potentially long
delays

With worker thread pools, a �xed number of threads, namely one dispatcher and several
workers, are created ahead of time. The dispatcher just records incoming requests in a to-do
data structure.

If a worker is currently idle (has nothing to do), it checks whether the to-do list contains
requests. If so, the worker picks one, removes it from the list, and processes it.

Think of a self-service restaurant with a single employee as dispatcher and multiple cooks
as workers.

With this model, the overhead compared to the thread-per-connection is limited as (a)
the number of threads is �xed and (b) workers do not need to be created and destroyed
dynamically. Also note that dispatcher and workers can be assigned to di�erent CPU cores
for parallel work. It may happen, though, that dispatcher or workers are overloaded by the
number of incoming requests, which leads to potentially long delays (again, think of self-service
restaurants).

6.4.1 Aside: Virtual Threads in Java

� Beyond class topics

� Java 19 introduced virtual threads in preview API

� See JEP 436 or blog post for details

� Overhead reduced to enable thread per client model with blocking
I/O

* Map large number of virtual threads to pool of small number of
OS threads

* When virtual thread blocks on I/O, Java runtime performs non-
blocking OS call and

· suspends virtual thread until it can be resumed later and

· executes di�erent virtual thread on same OS thread

14

https://openjdk.org/jeps/436
https://blogs.oracle.com/javamagazine/post/java-loom-virtual-threads-platform-threads


7 Conclusions

7.1 Summary

� Threads represent individual instruction execution sequences

� Multithreading improves

� Resource utilization

� Responsiveness

� Modular design in presence of concurrency

� Preemptive multithreading with housekeeping by OS

� Thread switching with overhead

� Design choices: I/O blocking or not, servers with multiple threads or not

Bibliography

[Bar+17] Luiz Barroso et al. �Attack of the Killer Microseconds�. In: CACM
60.4 (2017), pp. 48�54. url: https://dl.acm.org/citation.cfm?
id=3015146.

[Hai19] Max Hailperin. Operating Systems and Middleware � Supporting

Controlled Interaction. revised edition 1.3.1, 2019. url: https://
gustavus.edu/mcs/max/os-book/.

License Information

This document is part of an Open Educational Resource (OER) course on Op-
erating Systems. Source code and source �les are available on GitLab under
free licenses.

Except where otherwise noted, the work �OS03: Threads�, © 2017-2023
Jens Lechtenbörger, is published under the Creative Commons license CC BY-
SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., �Creative Commons� itself) remain with their respective holders.

15

https://dl.acm.org/citation.cfm?id=3015146
https://dl.acm.org/citation.cfm?id=3015146
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding

	Introduction
	OS Plan
	Today’s Core Questions
	Learning Objectives
	Retrieval practice
	Informatik 1
	Recall: Stack
	Drawing on Stack
	Previously on OS …
	Recall: Blocking vs Non-Blocking I/O


	Threads
	Threads and Programs
	Thread Creation and Termination
	Thread Terminology
	Parallelism
	Concurrency
	Thread Preemption
	Thread Classification


	Java Threads
	Threads in Java
	Java Thread Example
	Self-Study Task: CPU Usage

	Reasons for Threads
	Main Reasons
	Interleaved Execution Example
	Example: Web Server
	Single- vs Multithreaded Web Server

	Thread Switching
	Thread Switching for Multitasking
	Thread Switching with yield

	Interleaved Instruction Sequence
	Thread Control Blocks (TCBs)
	Cooperative Multitasking
	Preemptive Multitasking
	Multitasking Overhead

	Server Models
	Server Models with Blocking I/O: Single-Threaded
	Server Models with Blocking I/O: Multi-Threaded
	Server Models with Non-Blocking I/O
	Worker Thread Pool
	Aside: Virtual Threads in Java


	Conclusions
	Summary


