
OS04: Scheduling *

Based on Chapter 3 of [Hai19]

Jens Lechtenbörger

Computer Structures and Operating Systems 2023

1 Introduction

1.1 OS Plan

� OS Overview (Wk 20)

� OS Introduction (Wk 21)

� Interrupts and I/O (Wk 21)

� Threads (Wk 23)

� Thread Scheduling (Wk 24)

� Mutual Exclusion (MX) (Wk 25)

� MX in Java (Wk 25)

� MX Challenges (Wk 25)

� Virtual Memory I (Wk 26)

� Virtual Memory II (Wk 26)

� Processes (Wk 27)

� Security (Wk 28)

Figure 1: OS course plan, summer 2022

1.2 Previously on OS . . .

� What is multitasking?

� What are blocking system calls?

� What types of threads exist?

� What is preemption?

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://oer.gitlab.io/OS/Operating-Systems-Scheduling.html
https://gitlab.com/oer/OS
https://gitlab.com/oer/OS


1.2.1 CPU Scheduling

Warning! External �gure not included: �CPU scheduling� © 2016 Julia
Evans, all rights reserved from julia's drawings. Displayed here with personal
permission.
(See HTML presentation instead.)

1.3 Today's Core Questions

� How does the OS manage the shared resource CPU? What goals are pur-
sued?

� How does the OS distinguish threads that could run on the CPU from
those that cannot (i.e., that are blocked)?

� How does the OS schedule threads for execution?

1.4 Learning Objectives

� Explain thread concept (continued)

� Including states and priorities

� Explain scheduling mechanisms and their goals

� Apply scheduling algorithms

� FCFS, Round Robin

1.5 Retrieval Practice

� Before you continue, answer the following; ideally, without outside help.

� What is a process, what a thread?

� What does concurrency mean?

* How does it arise?

� What is preemption?

1.5.1 Thread Terminology

Table of Contents

2 Scheduling

2.1 CPU Scheduling

� With multitasking, lots of threads share resources

� Focus here: CPU

� Scheduling (planning) and dispatching (allocation) of CPU via OS

� Non-preemptive, e.g., FIFO scheduling

2

https://drawings.jvns.ca/scheduling/


* Thread on CPU until yield, termination, or blocking

� Preemptive, e.g., Round Robin scheduling

* Typical case for desktop OSs

1. Among all threads, schedule and dispatch one, say T0

2. Allow T0 to execute on CPU for some time, then preempt it

3. Repeat, go to step (1)

� (Similar decisions take place in industrial production, which you may know
from operations management)

Scheduling is the planning of resource allocations. Here, we just consider the allocation
of the resource CPU among multiple threads.

Concerning wording, the planning itself is called scheduling, while the allocation is called
dispatching. Thus, after making a scheduling decision, the OS dispatches one thread to run
on the CPU.

Two major scheduling variants are non-preemptive and preemptive ones. With non-
preemptive scheduling, the OS allows the currently executing thread to continue as long as it
wants. The bullet point names some situations when a thread might stop, which is when the
next scheduling decision takes place.

With preemptive scheduling, the OS may pause, or preempt, a thread in the middle of its
execution although it could continue with more useful work on the CPU. Here, the OS uses
a timer to de�ne the length of some time slice, for which the dispatched thread is allowed to
run at most. If the thread executes a blocking system call or terminates before the timer runs
out, the OS cancels the timer and makes the next scheduling decision. When the timer runs
out, it triggers an interrupt, causing the interrupt handler to run on the CPU for the next
scheduling decision.

2.2 Sample Scheduling Goals

� Scheduling is hard, as various goals with trade-o�s exist

� Trade-o�: Improvement for one goal may negatively a�ect others
(discussed subsequently)

� Sample goals

� E�cient resource usage

� Fairness (e.g., equal CPU shares per thread)

� Response time (de�nition)

� Throughput (de�nition)

3 Thread States

3.1 Reasons to Distinguish States

� Recall: Some threads may be blocked

� E.g., wait for I/O operation to �nish or sleep system call (recall
Simpler2Threads)

* More generally, threads may perform blocking system calls

� Busy waiting would be a waste of CPU resources

* If other threads could run on CPU

3



� OS distinguishes thread states (details subsequently)

� Tell threads apart that might perform useful computations (runnable)
on the CPU from those that do not (blocked/waiting)

� Scheduler does not need to consider waiting threads

� Scheduler considers runnable threads, selects one, dispatches that for
execution on CPU (which is then running)

3.2 OS Thread States

� Di�erent OSs distinguish di�erent sets of states; typically:

� Running: Thread(s) currently executing on CPU (cores)

� Runnable: Threads ready to perform computations

� Waiting or blocked: Threads waiting for some event to occur

� OS manages states via queues (with suitable data structures)

� Run queue(s): Potentially per CPU core

* Containing runnable threads, input for scheduler

� Wait queue(s): Potentially per event (type)

* Containing waiting threads

· OS inserts running thread here upon blocking system call

· OS moves thread from here to run queue when event occurs

3.3 Thread State Transitions

Figure 2: �Figure 3.3 of [Hai17]� by Max Hailperin under CC BY-SA 3.0; con-
verted from GitHub

This diagram shows typical state transitions caused by actions of threads, decisions of the OS,
and external I/O events. State changes are always managed by the OS.

Newly created threads, such as the ones you created in Java, are Runnable. When the
CPU is idle, the OS' scheduler executes a selection algorithm among the Runnable threads
and dispatches one to run on the CPU. When that thread yields or is preempted, the OS
remembers that thread as Runnable.

4

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0303.pdf


If the thread invokes a blocking system call, the OS changes its state to Waiting. Once
the event for which the thread waits has happened (e.g., a key pressed or some data has been
transferred from disk to RAM), the OS changes the state from Waiting to Runnable. At some
later point in time, that thread may be selected by the scheduler to run on the CPU again.

In addition, an outgoing arc Termination is shown from state Running, which indicates
that a thread has completed its computations (e.g., the main function in Java ends). Actually,
threads may also be terminated in states Runnable and Waiting, which is not shown here, but
which can happen if a thread is killed (e.g., you end a program or shut down the machine).

3.4 Scheduling Vocabulary

4 Scheduling Goals

4.1 Goal Overview

� Performance

� Throughput

* Number of completed threads (computations, jobs) per time unit

* More important for service providers than users

� Response time

* Time from thread start or interaction to useful reaction

� User control

� Resource allocation

� Mechanisms for urgency or importance, e.g., priorities

As computer users, we expect di�erent goals from scheduling mechanisms, for which sub-
sequent slides contain some details: First, we are usually interested in high performance in
the senses of throughput and response time.

Second, we may want to exert some control to in�uence the scheduling decisions. For
example, when you think of rented compute capacity, where you share resources with other
customers, the resources allocated to you (including CPU time) depend on the amount of
money you pay.

Besides, programmers can assign priorities to threads to indicate their relative urgency or
importance.

4.1.1 Throughput

� To increase throughput, avoid idle times of CPU

� Thus, reassign CPU when currently running thread needs to wait

� Context switching necessary

� Recall: Context switching comes with overhead

� Overhead reduces throughput

4.1.2 Response Time

� Frequent context switches may help for small response time

� However, their overhead hurts throughput

� Responding quickly to one thread may slow down another one

� May use priorities to indicate preferences

5



4.1.3 Resource Allocation

� What fraction of resources for what purpose?

� Proportional share scheduling

� E.g., multi-user machine: Di�erent users obtain same share of CPU
time every second

* (Unless one pays more: Larger share for that user)

� Group scheduling: Assign threads to groups, each of which receives its
proportional share → Linux scheduler later on

4.2 Priorities in Practice

� Di�erent OSs (and execution environments such as Java) provide di�erent
means to express priority

� E.g., numerical priority, so-called niceness value, deadline, . . .

� Upon thread creation, its priority can be speci�ed (by the program-
mer, with default value)

* Priority recorded in TCB

* Sometimes, administrator privileges are necessary for �high� pri-
orities

* Also, OS tools may allow to change priorities at runtime

4.3 Thread Properties in Java

� Java API

� �Every thread has a priority. Threads with higher priority are exe-
cuted in preference to threads with lower priority.�

� May interpret as: Preemptive, priority-driven scheduling

� Priorities via integer values

� Higher number → more CPU time

� Preemptive

* Current thread has highest priority

* Newly created thread with higher priority replaces old one on
CPU

* Most of the time (above quote from API is vague)

� Time slices not guaranteed (implementation dependent)

� Starvation possible

6

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/lang/Thread.html


5 Scheduling Mechanisms

5.1 Three Families of Schedulers

� This section covers three families
of schedulers

1. Fixed thread priorities

2. Dynamically adjusted
thread priorities

3. Controlling proportional
shares of processing time

� Visualization on right shows
structure of this section

� With sample algorithms per
family

Figure 3: Scheduling Mechanisms

5.1.1 Notes on Scheduling

� For scheduling with pen and paper, you need to know arrival times and
service times for threads

� Arrival time: Point in time when thread created

� Service time: CPU time necessary to complete thread

* (For simplicity, blocking I/O is not considered; otherwise, you
would also need to know frequency and duration of I/O opera-
tions)

� OS does not know either ahead of time

� OS creates threads (so, knowledge of arrival time is not an issue) and
inserts them into necessary data structures during normal operation

� When threads terminate, OS again participates

* Thus, OS can compute service time after the fact

* (Some scheduling algorithms require service time for scheduling
decisions; then threads need to declare that upon start. Not
considered here.)

5.2 Fixed-Priority Scheduling

� Use �xed, numerical priority per thread

� Threads with higher priority preferred over others

* Smaller or higher numbers may indicate higher priority: OS de-
pendent

� Implementation alternatives

� Single queue ordered by priority

7



� Or one queue per priority

* OS schedules threads from highest-priority non-empty queue

� Scheduling whenever CPU idle or some thread becomes runnable

� Dispatch thread of highest priority

* In case of ties: Run one until end (FIFO) or serve all Round
Robin

5.2.1 Warning on Fixed-Priority Scheduling

� Starvation of low-priority threads possible

� Starvation = continued denial of resource

* Here, low-priority threads do not receive resource CPU as long
as threads with higher priority exist

� Careful design necessary

* E.g., for hard-real-time systems (such as cars, aircrafts, power
plants)

* (Beware of priority inversion, a topic for a later presentation!)

5.2.2 FIFO/FCFS Scheduling

� FIFO = First in, �rst out

� (= FCFS = �rst come, �rst served)

� Think of queue in supermarket

� Non-preemptive strategy: Run �rst thread until completed (or blocked)

� For threads of equal priority

5.2.3 Round Robin Scheduling

� Key ingredients

� Time slice (quantum, q)

* Timer with interrupt, e.g., every 30ms

� Queue(s) for runnable threads

* Newly created thread inserted at end

� Scheduling when (1) timer interrupt triggered or (2) thread ends or
is blocked

1. Timer interrupt: Preempt running thread

* Move previously running thread to end of runnable queue
(for its priority)

* Dispatch thread at head of queue (for highest priority) to
CPU

· With new timer for full time slice

8



2. Thread ends or is blocked

* Cancel its timer, dispatch thread at head of queue (for full
time slice)

� Video tutorial in Learnweb

5.3 Dynamic-Priority Scheduling

� With dynamic strategies, OS can adjust thread priorities during execution

� Sample strategies

� Earliest deadline �rst

* For tasks with deadlines � discussed in [Hai19], not part of
learning objectives

� Decay Usage Scheduling

5.3.1 Decay Usage Scheduling

� General intuition: I/O bound threads are at unfair disadvantage. (Why?)

� Decrease priority of threads in running state

� Increase priority of threads in waiting state

* Allows quick reaction to I/O completion (e.g, user interaction)

� OS may manage one queue of threads per priority

� Threads move between queues when priorities change

* Falls under more general pattern of multilevel feedback queue
schedulers

� Technically, threads have a base priority that is adjusted by OS

� Use Round Robin scheduling (for non-empty queue of highest-priority
threads) after priority adjustments

5.3.2 Decay Usage Scheduling in Mac OS X

� OS keeps track of CPU usage

� Usage increases linearly for time spent on CPU

* Usage recorded when thread leaves CPU (yield or preempt)

� Usage decays exponentially while thread is waiting

� Priority adjusted downward based on CPU usage

� Higher adjustments for threads with higher usage

* Those threads' priorities will be lower than others

9

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=68583#section-7
https://en.wikipedia.org/wiki/Multilevel_feedback_queue


5.3.3 Variant in MS Windows

� Increase of priority when thread leaves waiting state

� Priority boosting

� Amount of boost depends on wait reason

* More for interactive I/O (keyboard, mouse) then other types

� After boost, priority decreases linearly with increasing CPU usage

5.4 Proportional-Share Scheduling

� Simple form: Weighted Round Robin (WRR)

� Weight per thread is factor for length of time slice

� Discussion

* Con: Threads with high weight lead to long delays for others

* Pro: Fewer context switches than following alternative

* (See next slide)

� Alternative: Weighted fair queuing (WFQ)

� Uniform time slice

� Threads with lower weight �sit out� some iterations

5.4.1 WRR vs WFQ with sample Gantt Charts

� Threads T1, T2, T3 with weights 3, 2, 1; service times > 30ms; q = 10ms

� Supposed order of arrival: T1 �rst, T2 second, T3 third

� If threads are not done after shown sequence, start over with T1

Figure 4: Figure under CC0 1.0

Figure 5: Figure under CC0 1.0

5.5 CFS in Linux

� CFS = Completely fair scheduler

� Actually, variant of WRR above

* Weights determined via so-called niceness values

· (Lower niceness means higher priority)

10

https://gitlab.com/oer/figures/blob/master/OS/4-wrr.svg
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/blob/master/OS/4-wfq.svg
https://creativecommons.org/publicdomain/zero/1.0/


� Core idea

� Keep track of how long threads were on CPU

* Scaled according to weight

* Time spent on CPU called virtual runtime

· Represented e�ciently via red-black tree

� Schedule thread that is furthest behind

* This thread received least amount of CPU time → allow to catch
up

* Until preempted or time slice runs out

� (Some details in [Hai19])

5.6 When to Schedule

� Unless explicitly speci�ed otherwise, we consider preemptive scheduling
with time slices and priorities

� Threads may be removed from CPU before they are �done�

* As with Linux kernel, under stricter interpretation than Java's:

· �All scheduling is preemptive: if a thread with a higher static
priority becomes ready to run, the currently running thread
will be preempted and returned to the wait list for its static
priority level.�

� Scheduling based on thread states, priorities, and time slices

� Sample events that may initiate scheduling

* Thread state(s) change

· E.g., thread created or �nished, blocking system call, I/O
�nished; later: (un-) locking

* Thread priorities change

* Time slice runs out

Let us revisit when scheduling takes place. It turns out that precise answers depend on
design and implementation decisions. We consider preemptive scheduling of threads where
time slicing enables multitasking; concerning priorities, we suppose that they are handled
with preemption as in the case of Linux, for which a quote from a man page is shown on the
slide.

Importantly, the scheduler only considers runnable threads. Thus, state changes may
require a scheduling decision. E.g., if a thread invokes a blocking systems call, some other
thread needs to be selected to run. Similarly, when an event occurs that makes one or more
previously blocked threads runnable, scheduling may happen: If a newly runnable thread has
highest priority, the currently running one is preempted and scheduling takes place to select
a new one; otherwise, the currently running thread is likely to continue (but there may be
implementations that disagree).

Similarly, if the priority of the currently running thread decreases below that of other
threads or if some other thread or threads gain highest priority, scheduling must take place.
In contrast, the creation of new threads with low priority does not require scheduling.

Clearly, preemptive scheduling also takes place when the OS believes that the current
thread ran long enough.

Be careful not to confuse interrupt processing with scheduling. Indeed, some of the above
events involve interrupts while others do not: What matters are events with relevance to
scheduling as just discussed; whether an interrupt was involved in an event is less important.

11

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://man7.org/linux/man-pages/man7/sched.7.html
https://man7.org/linux/man-pages/man7/sched.7.html
https://man7.org/linux/man-pages/man7/sched.7.html
https://man7.org/linux/man-pages/man7/sched.7.html


5.7 Self-Study Task for Scheduling

This task is available for self-study in Learnweb.
Perform Round Robin scheduling given the following situation:

q=4 Thread Arrival Time Service Time
T1 0 3
T2 1 6
T3 4 3
T4 9 6
T5 10 2

6 Pointers beyond Class Topics

6.1 Fair Queuing

� Fair queuing is a general technique

� Also used, e.g., in computer networking

� Intuition

� System is fair if at all times every party has progressed according to
its share

* This would require in�nitesimally small steps

� Reality

� Approximate fairness via �small� discrete steps

� E.g., CFS

6.1.1 CFS with Blocking

� Above description of CFS assumes runnable threads

� Blocked threads lag behind

� If blocked brie�y, allow to catch up

� If blocked for a long time (above threshold), they would deprive all
other threads from CPU once awake again

* Hence, counter-measure necessary

· Give up fairness

* Forward virtual runtime to be slightly less than minimum of
previously runnable threads

� E�ect similar to dynamic priority adjustments of decay usage schedulers

12

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=68583#section-9


6.1.2 CFS with Groups

� CFS allows to assign threads to (hierarchies of) groups

� Scheduling then aims to treat groups fairly

� For example

� One group per user

* Every user obtains same CPU time

� User-de�ned groups

* E.g., multimedia with twice as much CPU time as programming
(music and video running smoothly despite compile jobs)

7 Conclusions

7.1 Summary

� OS performs scheduling for shared resources

� Focus here: CPU scheduling

� Subject to con�icting goals

� CPU scheduling based on thread states and priorities

� Fixed vs dynamic priorities vs proportional share

� CFS as example for proportional share scheduling

Bibliography

[Hai17] Max Hailperin. Operating Systems and Middleware � Supporting Con-

trolled Interaction. revised edition 1.3, 2017. url: https://gustavus.
edu/mcs/max/os-book/.

[Hai19] Max Hailperin. Operating Systems and Middleware � Supporting Con-

trolled Interaction. revised edition 1.3.1, 2019. url: https://gustavus.
edu/mcs/max/os-book/.

License Information

This document is part of an Open Educational Resource (OER) course on Op-
erating Systems. Source code and source �les are available on GitLab under
free licenses.

Except where otherwise noted, the work �OS04: Scheduling�, © 2017-2023
Jens Lechtenbörger, is published under the Creative Commons license CC BY-
SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., �Creative Commons� itself) remain with their respective holders.

13

https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding

	Introduction
	OS Plan
	Previously on OS …
	CPU Scheduling

	Today’s Core Questions
	Learning Objectives
	Retrieval Practice
	Thread Terminology


	Scheduling
	CPU Scheduling
	Sample Scheduling Goals

	Thread States
	Reasons to Distinguish States
	OS Thread States
	Thread State Transitions
	Scheduling Vocabulary

	Scheduling Goals
	Goal Overview
	Throughput
	Response Time
	Resource Allocation

	Priorities in Practice
	Thread Properties in Java

	Scheduling Mechanisms
	Three Families of Schedulers
	Notes on Scheduling

	Fixed-Priority Scheduling
	Warning on Fixed-Priority Scheduling
	FIFO/FCFS Scheduling
	Round Robin Scheduling

	Dynamic-Priority Scheduling
	Decay Usage Scheduling
	Decay Usage Scheduling in Mac OS X
	Variant in MS Windows

	Proportional-Share Scheduling
	WRR vs WFQ with sample Gantt Charts

	CFS in Linux
	When to Schedule
	Self-Study Task for Scheduling

	Pointers beyond Class Topics
	Fair Queuing
	CFS with Blocking
	CFS with Groups


	Conclusions
	Summary


