
OS09: Virtual Memory II *

Based on Chapter 6 of [Hai19]

Jens Lechtenbörger

Computer Structures and Operating Systems 2023

1 Introduction

1.1 OS Plan

� OS Overview (Wk 20)

� OS Introduction (Wk 21)

� Interrupts and I/O (Wk 21)

� Threads (Wk 23)

� Thread Scheduling (Wk 24)

� Mutual Exclusion (MX) (Wk 25)

� MX in Java (Wk 25)

� MX Challenges (Wk 25)

� Virtual Memory I (Wk 26)

� Virtual Memory II (Wk 26)

� Processes (Wk 27)

� Security (Wk 28)

Figure 1: OS course plan, summer 2022

1.2 Today's Core Questions

� How can the size of page tables be reduced?

� How can address translation be sped up?

� How does the OS allocate frames to processes?

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://oer.gitlab.io/OS/Operating-Systems-Memory-II.html
https://gitlab.com/oer/OS
https://gitlab.com/oer/OS


1.3 Learning Objectives

� Explain paging, swapping, and thrashing

� Discuss di�erences of di�erent types of page tables

� Explain role of TLB in address translation

� Apply page replacement with FIFO, LRU, Clock

1.4 Retrieval Practice

1.4.1 Recall: Hash Tables

� Hash table = data structure with search in O(1) on average

� Taught in Data Structures and Algorithms

� What are hash collisions, buckets, chaining?

1.4.2 Previously on OS . . .

� What is a virtual address, how is it related to page tables?

� What piece of hardware is responsible for address translation?

� How large are page tables? How many exist?

� What happens upon page misses?

� What is demand loading?

� The size of page tables poses a challenge.

1.4.3 Selected Questions

Table of Contents

2 Multilevel Page Tables

2.1 Core Idea

� So far: Virtual address is hierarchical object consisting of page number
and o�set

� Nowmultilevel page tables: Interpret page table as tree with �xed depth,
i.e., a �xed number of multiple levels

� (Visualizations on next two slides)

� For n levels, split page number into n smaller parts

* Two-level for 32 bits: Split 20 bits into two parts with 10 bits
each

� To traverse page table (tree), use one part on each level

� Aside: On 64-bit machines, Linux introduced 5-level tables as default on
2019-09-16

2

https://en.wikipedia.org/wiki/Hash_table
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=18ec1eaf58fbf2d9009a752a102a3d8e0d905a0f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=18ec1eaf58fbf2d9009a752a102a3d8e0d905a0f


2.2 Two-Level Page Table

Page directory

(No pages
1024–2047)

(No page 1)

X

Page table

…

…… …Valid

Page frame

1 0 1

0 42

1 1

100 99

Pages 
0–1023

Pages
1047552–1048575

Valid 1 0 1

XPointer

Figure 2: �IA-32 two-level page table� by Jens Lechtenbörger under CC BY-SA
4.0; Frame numbers and valid bits added to and third layer removed from Figure
6.13 of [Hai17] by Max Hailperin under CC BY-SA 3.0. Source at GitLab.

Note: Page table contains entries of an ordinary page table. Previously, valid
bit and page frame numbers were shown in columns; here, they are shown in
rows.

This �gure shows a two-level page table as used in Intel's 32-bit processor architecture
IA-32. The entry point to this two-level page table is called page directory and can point to
1024 chunks of the page table, each of which can point to 1024 page frames. Note that with
1024 entries of 4 B each, the page directory as well as chunks of the page table �t exactly into
pages and frames of 4 KiB. The leftmost pointer leading from the leftmost chunk of the page
table points to the frame holding page 0. Each entry can also be marked invalid, indicated
by an X in this diagram. For example, the second entry in the �rst chunk of the page table is
invalid, showing that no frame holds page 1. The same principle applies at the page directory
level as well; in this example, no frames hold pages 1024-2047, so the second page directory
entry is marked invalid.

3

https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0613.pdf
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0613.pdf
https://creativecommons.org/licenses/by-sa/3.0/
https://gitlab.com/oer/figures/blob/master/OS/hail_f0613_with_embedded_frame_nos.odg


2.2.1 Two-Level Address Translation

Figure 3: �Figure 6.14 of [Hai17]� by Max Hailperin under CC BY-SA 3.0;
converted from GitHub

This diagram shows the core of IA-32 paged address mapping. As explained previously, virtual
addresses are understood as hierarchical objects which are divided into a 20-bit page number
and 12-bit o�set within the page; the latter 12 bits are left unchanged by the translation
process. Due to the two-level nature of the page table, the 20-bit page number is subdivided
into a 10-bit page directory index and a 10-bit page table index. Each index is multiplied
by 4, the number of bytes in each entry, and then added to the base physical address of the
corresponding data structure, producing a physical memory address from which the entry is
loaded. The base address of the page directory comes from a special register, whereas the

4

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0614.pdf


base address of the page table comes from the page directory entry.

3 Inverted Page Tables and Hardware Support

3.1 Inverted Page Tables

� Recall: Page tables can be huge, per process

� Key insights to reduce amount of memory:

� Number of frames is (usually) much smaller than aggregate number
of pages

� Thus, let us record information per frame, not per page and process

* (For each frame, what page of what process is currently con-
tained?)

� Obtain frame for page via hashing of page number

� PowerPC, UltraSPARC, IA-64

3.1.1 Example

� Simplistic example, 4 frames, hashing via modulo 4

5



Figure 4: �Figure 6.10 of [Hai17]� by Max Hailperin under CC BY-SA 3.0;
converted from GitHub

� (Inverted page table below based on Fig. 6.15 of [Hai19]; represents
main memory situation shown to the right)

� E.g., page 0: 0 mod 4 = 0; thus look into row 0, �nd that page 0 is
contained in frame 1

Valid Page Process Frame
1 0 42 1
1 1 42 0
1 6 42 3
0 X X X

Consider the simpli�ed and simplistic inverted page table shown here capturing the mem-
ory situation of the process shown to the right, which is called process 42. Note that in reality,
RAM would contain pages of several processes.

Here just 4 frames of RAM are available, and hashing of page number n is computed as
n modulo 4.

When, for example, an instruction executed by the CPU on behalf of process 42 touches
a virtual address located in page 0, hashing is used to compute 0 mod 4 = 0, which indicates

6

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0610.pdf


that the �rst table entry needs to be accessed (as counting starts from 0). This entry shows
that page 0 is located in frame 1, and the physical address can be built as usual.

As a side remark, if you read elsewhere about inverted page tables please note that you
may �nd a slightly di�erent scheme where the frame number is not included in table entries:
If the table contains exactly one entry per frame of RAM, frame numbers can be omitted
and instead entry number n would indicate the contents of frame number n. E.g., entry 2
here would not contain a frame number but directly indicate that frame 2 contains page 6 of
process 42.

3.1.2 Observations

� Constant table size

� Proportional to main memory size

� Independent of number of processes

* One entry per frame is su�cient

� Entries are large

� Page numbers included (hash collisions)

� Process IDs included (hash collisions)

� Pointers for over�ow handling necessary (not shown above)

� If there is one entry per frame, the frame number does not need to
be included (implicit as entry's number)

� Side note: E�cient use in practice is hard

� See comments by Linus Torvalds if you are interested

3.2 Hardware Support for Address Translations

� Lots of architectures support page tables in hardware

� Multilevel and/or inverted page tables

� Page table walker does translation in hardware

* Architecture speci�es page table structure

· For multilevel page tables, special register stores start ad-
dress of page directory

� Special cache to reduce translation latency, the TLB (next slide)

3.2.1 Translation Lookaside Bu�er (TLB)

� Access to virtual address may require several memory accesses →
Overhead

� Access to page table (one per level)

� Access to data

� Improvement: Caching

� Special cache, called TLB, for page table entries

7

https://yarchive.net/comp/linux/page_tables.html
https://en.wikipedia.org/wiki/Hardware_cache


* Recently used translations of page numbers to frame numbers

� MMU searches in TLB �rst to build physical address

* Note: Search for page, not entire virtual address

* If not found (TLB miss): Page table access

� Note: Context switch may require TLB �ush → Overhead

* Reduced when entries have address space identi�er (ASID)

· See [Hai19] if you are interested in details

4 Policies

4.1 Terminology

� To page = to load a page of data into RAM

� Managed by OS

� Paging causes swapping and may lead to thrashing as discussed next

� Paging policies, to be discussed afterwards, aim to reduce both phenomena

4.1.1 Swapping

� Under-speci�ed term

� Either (desktop OSs)

� Usual paging in case of page faults

* Page replacement: Swap one page out of frame to disk, another
one in

· Discussed subsequently

� Or (e.g., mainframe OSs)

� Swap out entire process (all of its pages and all of its threads)

* New state for its threads: swapped/suspended

· No thread can run as nothing resides in RAM

� Swap in later, make process/threads runnable again

� (Not considered subsequently)

4.1.2 Thrashing

� Permanent swapping without progress

� Another type of livelock

� Time wasted with overhead of swapping and context switching

� Typical situation: no free frames

� Page faults are frequent

* OS blocks thread, performs page replacement via swapping

8



* After context switch to di�erent thread, again page fault

� More swapping

� Reason: Too many processes/threads

� Mainframe OSs may swap out entire processes then

* Control so-called multiprogramming level (MPL)

· Enforce upper bound on number of active processes

� Desktop OSs let users deal with this

4.2 Fetch Policy

� General question: When to bring pages into RAM?

� Popular alternatives

� Demand paging (contrast with demand loading)

* Only load page upon page fault

* E�cient use of RAM at cost of lots of page faults

� Prepaging

* Bring several pages into RAM, anticipate future use

* If future use guessed correctly, fewer page faults result

· Also, loading a random hard disk page into RAM involves
rotational delay

· Such delays are reduced when neighboring pages are read in
one operation

· (Even for SSDs, multiple random I/O operations are slower
than a single sequential I/O operation of the same size as
each operation comes with overhead)

4.2.1 Prepaging ideas

� Clustered paging, read around

� Do not read just one page but a cluster of neighboring pages

* Can be turned on or o� in system calls

� OS and program start

� OSs may monitor page faults, record and use them upon next
start to pre-load necessary data

* Linux with readahead system call

* Windows with Prefetching and SuperFetch

9

https://www.computerhope.com/jargon/r/rotadela.htm
https://en.wikipedia.org/wiki/Readahead
https://en.wikipedia.org/wiki/Prefetcher


4.3 Replacement Policy

� What frame to re-use when a page fault occurs while all frames are full?

� Recall goal: Keep working sets in RAM

� Local vs global replacement

� Local: Replace within frames of same process

* When to in- or decrease resident set size?

� Global: Replace among all frames

4.3.1 Sample Replacement Policies

� OPT: Hypothetical optimal replacement

� Replace page that has its next use furthest in the future

* Needs knowledge about future, which is unrealistic

� FIFO: First In, First Out replacement

� Replace oldest page �rst

* Independent of number/distribution of references

� LRU: Least Recently Used replacement

� Replace page that has gone the longest without being accessed

* Based on principle of locality, upcoming access unlikely

� Clock (second chance)

� Replace �unused� page

* Use 1 bit to keep track of �recent� use

4.3.2 Replacement Examples

Figure 5: �Figure 6.19 of [Hai17]� by Max Hailperin under CC BY-SA 3.0;
converted from GitHub

10

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0619.pdf


In this comparison of the OPT, LRU, and FIFO replacement policies, each pair of boxes
represents the two frames available on an unrealistically small system. The numbers within
the boxes indicate which page is stored in each frame. The numbers across the top are the
page reference sequence, and the letters h and m indicate hits and misses. In this example,
LRU performs better than FIFO, in that it has one more hit. OPT performs even better,
with three hits.

4.3.3 Clock (Second Chance)

� Frames arranged in cycle, pointer to next frame

Figure 6: Clock algorithm for page replacement

� (Naming: Pointer as hand of clock)

� Pointer �wraps around� from �last� frame to ��rst� one

� Use-bit per frame

� Set to 1 when page referenced/used

4.3.4 Beware of the Use Bit

� Use-bit may be part of hardware support

� Use-bit set to 0 when page swapped in

� Under demand paging, use-bit immediately set to 1 due to reference

� Following examples assume that page is referenced for use

� Thus, use-bit is 1 for new pages

� Under prepaging, use-bit may stay 0

4.3.5 Clock (Second Chance): Algorithm

� If page hit

� Set use-bit to 1

11



� Keep pointer unchanged

� If page fault

� Check frame at pointer

� If free, use immediately, advance pointer

� Otherwise

* If use-bit is 0, then replace; advance pointer

* If use-bit is 1, reset bit to 0, advance pointer, repeat (Go to
�Check frame at pointer�)

* (Naming: In contrast to FIFO, page gets a second chance)

4.3.6 Clock (Second Chance): Animation

� Consider reference of page 7 in previous situation

� All frames full, page 7 not present in RAM

� Page faultWarning! Figure omitted as gif format not supported in
LATEX: �Animation of Clock algorithm for page replacement�
(See HTML presentation instead.)

* Frame at pointer is 2, page 44 has use bit of 1

· Reset use bit to 0, advance pointer to frame 3

* Frame at pointer is 3, page 3 has use bit of 0

· Replace page 3 with 7, set use bit to 1 due to reference

· Advance pointer to frame 4

4.3.7 Clock: Di�erent Animation

� Situation

� Four frames of main memory, initially empty

� Page references: 1, 3, 4, 7, 1, 2, 4, 1, 3, 4

Warning! Figure omitted as gif format not supported in LATEX: ��Page
replacement example with Clock algorithm� by Christoph Ilse under CC0 1.0;
from GitLab�
(See HTML presentation instead.)

12

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/blob/master/OS/clock-steps-2.gif


4.3.8 More Replacement Examples

Figure 7: Example for page replacement with OPT, LRU, FIFO, Clock

The layout of this diagram mirrors the one of Fig. 6.19 but is extended to four frames. For
Clock, demand paging is assumed; the arrow shows the pointer position, and �*� indicates a
use-bit of 1.

Let's see how Clock works. Consider the 6th page reference, which is supposed to bring
page 2 into RAM under the situation where

� all frames are full,

� all use-bits are 1,

� the pointer is at frame 0, where page 1 has a use bit of 1.

Following Clock's steps, the use-bit of page 1 is reset to 0, and the pointer is advanced to
frame 1. Page 3 in frame 1 has a use-bit of 1, which is reset to 0, and the pointer is advanced.
That way all use-bits are reset, before the pointer points to page 1 in frame 0 again. This
time, the use-bit is 0, hence the contents of frame 0 are replaced with page 2, and the pointer
is advanced once more. As we consider demand paging, an access into page 2 occurs, which
sets the use-bit to 1.

4.4 Self-Study Task

� Perform the following task in Learnweb.

Apply the page replacement algorithms OPT, FIFO, LRU, and Clock
(Second Chance) for four frames of main memory to the following stream
of page references under demand paging: 1, 3, 4, 7, 1, 2, 4, 1, 3, 4 Verify
your results against the previous slide and raise any questions that you
may have.

13

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=68583#section-11


5 Conclusions

5.1 Summary

� Virtual memory provides abstraction over RAM and secondary storage

� Paging as fundamental mechanism for �exibility and isolation

� Page tables managed by OS

� Hardware support via MMU with TLB

� Management of �necessary� pages is complex

* Tasks include prepaging and page replacement

Bibliography

[Hai17] Max Hailperin. Operating Systems and Middleware � Supporting Con-

trolled Interaction. revised edition 1.3, 2017. url: https://gustavus.
edu/mcs/max/os-book/.

[Hai19] Max Hailperin. Operating Systems and Middleware � Supporting Con-

trolled Interaction. revised edition 1.3.1, 2019. url: https://gustavus.
edu/mcs/max/os-book/.

License Information

This document is part of an Open Educational Resource (OER) course on Op-
erating Systems. Source code and source �les are available on GitLab under
free licenses.

Except where otherwise noted, the work �OS09: Virtual Memory II�, ©
2017-2023 Jens Lechtenbörger, is published under the Creative Commons license
CC BY-SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., �Creative Commons� itself) remain with their respective holders.

14

https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding

	Introduction
	OS Plan
	Today’s Core Questions
	Learning Objectives
	Retrieval Practice
	Recall: Hash Tables
	Previously on OS …
	Selected Questions


	Multilevel Page Tables
	Core Idea
	Two-Level Page Table
	Two-Level Address Translation


	Inverted Page Tables and Hardware Support
	Inverted Page Tables
	Example
	Observations

	Hardware Support for Address Translations
	Translation Lookaside Buffer (TLB)


	Policies
	Terminology
	Swapping
	Thrashing

	Fetch Policy
	Prepaging ideas

	Replacement Policy
	Sample Replacement Policies
	Replacement Examples
	Clock (Second Chance)
	Beware of the Use Bit
	Clock (Second Chance): Algorithm
	Clock (Second Chance): Animation
	Clock: Different Animation
	More Replacement Examples

	Self-Study Task

	Conclusions
	Summary


