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1 Introduction

1.1 OS Plan

� OS Overview (Wk 20)

� OS Introduction (Wk 21)

� Interrupts and I/O (Wk 21)

� Threads (Wk 23)

� Thread Scheduling (Wk 24)

� Mutual Exclusion (MX) (Wk 25)

� MX in Java (Wk 25)

� MX Challenges (Wk 25)

� Virtual Memory I (Wk 26)

� Virtual Memory II (Wk 26)

� Processes (Wk 27)

� Security (Wk 28)

Figure 1: OS course plan, summer 2022

1.2 Today's Core Question

� Am I �ne if I lock all shared resources before use?

(Short answer: No. Issues such as priority inversion, deadlocks, starvation
may arise.)

1.3 Learning Objectives

� Explain priority inversion and counter measures

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.
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� Explain and apply deadlock prevention and detection

� Explain convoys and starvation as MX challenges

1.4 Previously on OS . . .

� Mutexes may be based either on busy waiting (spinlocks) or on blocking
(e.g., lock, mutex, semaphore, monitor)

� Threads may have di�erent priorities

� Lower priority threads are preempted for those with higher priority
(e.g., with round robin scheduling), which may lead to starvation

1.4.1 Threads, again

1.5 Di�erent Learning Styles

� In previous years, some students reported that Section 4.8.1 (pp. 135 �
137) of [Hai19] on Priority Inversion is quite easy to understand, while
they perceived that section in this presentation to be confusing.

� Note that [Hai19] discusses Priority Inversion resulting from locks/mutexes
with blocking, while the slides also contain a variant with spinlocks.

Table of Contents

2 Priority Inversion

In general, if threads with di�erent priorities exist, the OS should run those with high priority
in preference to those with lower priority.

The technical term �priority inversion� denotes phenomena, where low-priority threads
hinder the progress of high-priority threads, which intuitively should not happen. The next
slides demonstrate such phenomena, �rst a weaker variant where MX is enforced with spin-
locks, then the more usual variant with MX based on blocking.

2.1 Priority Inversion with Spinlocks

� Example; single CPU core (visualization on next slide)

1. Thread T0 with low priority enters CS

2. T0 preempted by OS for T1 with high priority

� E.g., an important event occurs, to be handled by T1

� Note that T0 is still inside CS, holds lock

3. T1 tries to enter same CS and spins on lock held by T0

� This is a variant of priority inversion

� High-priority thread T1 cannot continue due to actions by low-priority
thread

* If just one CPU core exists: Low-priority thread T0 cannot con-
tinue

2



· As CPU occupied by T1

· Deadlock (discussed subsequently)

* If multiple cores exist: Low-priority thread T0 runs although
thread with higher priority does not make progress

2.1.1 Single Core

Figure 2: Figure under CC0 1.0

See previous slide or notes for explanations
Green thread T0 executes on the single CPU core where is enters a CS, holding a lock,

until the red thread T1 with higher priority arrives. At that point in time, T0 is preempted
(still inside the CS, holding a lock), and T1 runs, wanting to enter the CS. T1 now spins on
the lock forever.
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2.1.2 Two Cores

Figure 3: Figure under CC0 1.0

See earlier slide or notes for explanations
This time, two CPU cores are available. As before, green thread T0 executes and is inside

a CS, holding a lock. When red thread T1 with higher priority arrives, it can be dispatched
for execution on the second core. So, T0 and T1 run in parallel. T1 tries to enter the CS,
but needs to spin on the lock held by T0 for some time. As T1 has higher priority than T0,
T1 should intuitively not be delayed by T0. Thus, we say that this is a variant of priority
inversion.

When T0 leaves the CS and releases the lock, T1 is able to enter the CS.

2.2 Priority Inversion with Blocking

� (Visualization on next slide)

� T0 with low, TM with medium, T1 with high priority

1. T0 in CS

2. An important event occurs, OS preempts T0 for T1

� T1 attempts entry into same CS, T1 gets blocked

� T0 could continue if no higher priority thread existed

3. Another, less important, event occurs, to be handled by TM

� Based on priority, OS favors TM over T0
� TM runs instead of more highly prioritized T1 → Priority in-
version

* (TM does unrelated work, without need to enter the CS)

� T0 cannot leave CS as long as TM exists
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� With long running or many threads of medium priority, T1 (and important
event) need to wait for a long time

2.2.1 Blocking CS

Figure 4: Figure under CC0 1.0

See previous slide for explanations

2.3 Priority Inversion Example

� Mars Path�nder, 1997; Wikipedia o�ers details

� Robotic spacecraft named Path�nder
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Figure 5: �Sojourner Rover� by NASA under Public domain; from Wikimedia
Commons

* With rover named Sojourner (shown to right)

� A �low-cost� mission at $280 million

� Bug (priority inversion) caused repeated resets

� �found in pre�ight testing but was deemed a glitch and therefore
given a low priority as it only occurred in certain unanticipated
heavy-load conditions�

� Priority inversion had been known for a long time

� E.g.: [LR80]

2.4 Priority Inversion Solutions

� Priority Inheritance (PI)

� Thread of low priority inherits priority of waiting thread

* E.g., PI-futex in Linux

* E.g., remote update for Mars Path�nder

· Mutex of Path�nder OS had �ag to activate PI

· Initially, PI was o� . . .

� Priority Ceiling (PC)

� Every resource has priority (new concept; so far only threads had
priorities)

* (Highest priority that �normal� threads can have) + 1

� Accessing thread runs with that priority

� In both cases: Restore old priority after access
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An intuitive explanation of Priority Inheritance is that if an important task, i.e., a thread
with high priority, needs to wait for �something else�, then this �something else� immediately
gains in importance, as the success of the important task depends on it.

Thus, with Priority Inheritance a thread of low priority holding some lock, mutex, semaphore,
or monitor, for which a high priority threads waits, inherits the priority of the high priority
waiting thread.

If you think again about the negative e�ects of medium priority threads for priority
inversion, those negative e�ects do no longer occur, as the thread with inherited priority is
now scheduled before medium priority threads. Thus, it �nishes fast, allowing the high priority
thread to continue quickly.

For Priority Ceiling, each resource is assigned a priority. The priority of a thread accessing
that resource is then increased to the resource's priority. Usually, the priority for resources
is set to be slightly higher than that of ordinary threads. Thus, for the duration of resource
accesses, threads run with highest priority and �nish quickly.

In both cases, Priority Inheritance and Priority Ceiling, priorities are restored after re-
source access.

To conclude, you should think twice whether you want to create threads with di�erent
priorities that share resources. If yes, priority inversion may happen. Then, you need to check
the documentation for whatever MX mechanism you are about to apply whether it supports
PI or PC. If neither is documented, do not use that mechanism.

2.5 Self-Study and Exercise Tasks

� This task is a variant of Exercise 4.10 of [Hai19]. Solve part (1) as self-
study in Learnweb. Another variant as exercise task.

� Suppose a computer with only one processor runs a program that cre-
ates three threads, which are assigned high, medium, and low �xed
priorities. (Assume that no other threads are competing for the same
processor.) The threads of high and medium priority are currently
blocked, waiting for di�erent events, while the thread with low prior-
ity is runnable. Some threads share a single mutex (to protect shared
resources that are not shown). Pseudocode for each of the threads is
shown subsequently.

1. Suppose that the mutex does not provide priority inheritance.
How soon would you expect the program to terminate? Why?

2. Suppose that the mutex provides priority inheritance. How soon
would you expect the program to terminate? Why?

High-priority thread:

�initially blocked; unblocked to handle event after 200 milliseconds�

perform lock() on mutex

run for 2 milliseconds on CPU

perform unlock() on mutex

terminate execution of the whole program

Medium-priority thread:

�initially blocked; unblocked to handle event after 200 milliseconds�

run for 500 milliseconds on CPU

Low-priority thread:

�initially runnable�

perform lock() on mutex

perform I/O operation which leads to blocking for 600 milliseconds
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run for 3 milliseconds on CPU

perform unlock() on mutex

3 Deadlocks

3.1 Deadlock

� Permanent blocking of thread set

Figure 6: �Gridlock� by Interiot~commonswiki and Jeanacoa under CC BY-SA
2.5 Generic; from Wikimedia Commons

� Reason

* Cyclic waiting for resources/locks/messages of other threads

* (Formal de�nition on later slide)

� No generally accepted solution

� Deadlocks can be perceived as programming bugs

* Dealing with deadlocks causes overhead

· Acceptable to deal with (hopefully rare) bugs?

� Solutions depend on

* Properties of resources (e.g., linearly ordered ones)

* Properties of threads (transactions?)

A deadlock is a programming bug, which leads to multiple threads being stuck: In essence,
the threads mutually wait for something from other threads which never arrives.

To get a feeling for deadlocks, note that some tra�c situations can be interpreted as
deadlocks. First, the image here shows a tra�c situation where no car can move because
other cars (in particular, the red ones) block required street segments. In OS terms, the
cars can be interpreted as threads, which are stuck, while street segments represent shared
resources under MX that are exclusively owned by some threads while others also need them.
This is an instance of cyclic waiting.

As a di�erent example, consider priority to the right and a street crossing where four cars
arrive from all four directions. Under �priority to the right�, each driver needs to wait for
another car to move �rst. Thus, neither can move, all are stuck.

In programming, we aim to avoid problematic algorithms or rules such a �priority to the
right� so that deadlocks do not occur. However, there is no generally accepted solution, and
you need to be particularly careful when using MX mechanisms.

As you will see, OSs typically ignore deadlocks, which is justi�ed by the reasoning that
programmers should avoid this type of bug; thus, there is no need to add additional complexity
and overhead to the OS. Moreover, solutions also depend on the type of resources, e.g., you
will see a strategy for linearly ordered resources later on.
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As a side note, database systems may involve deadlock detection for transactions, which
can be aborted to undo their e�ects, while this is less simple for threads in OSs. Thus, thread
properties also play a role in deadlock considerations.

3.2 Deadlock Example

� Money transfers between bank accounts

� Transfer from myAccount to yourAccount by thread 1; transfer in
other direction by thread 2

� Race conditions on account balances

� Need mutex per account

� Lock both accounts involved in transfer. What order?

� �Natural� lock order: First, lock source account; then, lock destination
account

� Thread 1 locks myAccount, while thread 2 locks yourAccount

* Each thread gets blocked once it attempts to acquire the second
lock

· Neither can continue

* Deadlock

3.3 De�ning Conditions for Deadlocks

Deadlock if and only if (1) � (4) hold [CES71]:

1. Mutual exclusion

� Exclusive resource usage

2. Hold and wait

� Threads hold some resources while waiting for others

3. No preemption

� OS does not forcibly remove allocated resources

4. Circular wait

� Circular chain of threads such that each thread holds resources that
are requested by next thread in chain
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3.4 Resource Allocation Graphs

� Representation and visualization of resource allocation as directed graph

� (Necessary prior knowledge: directed graphs and cycles in such graphs)

� Nodes

* Threads (squares on next slide)

* Resources (circles on next slide)

� Edges

* From thread T to resource R if T is waiting for R

* From resource R to thread T if R is allocated to T

� Example on next slide

� Fact: System in deadlock if and only if graph contains cycle

3.5 Resource Allocation Graph Example

Visualization of deadlock: cyclic resource allocation graph for previous example

Figure 7: �Figure 4.22 of [Hai17]� by Max Hailperin under CC BY-SA 3.0;
converted from GitHub

(Note: Choice of shapes is arbitrary; just for visualization purposes)

4 Deadlock Strategies

4.1 Deadlock Strategies

� (Ostrich algorithm)

� Deadlock Prevention

� Deadlock Avoidance

� Deadlock Detection

These strategies are covered in subsequent slides.
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4.2 Ostrich �Algorithm�

� A joke about missing deadlock
handling

� �Implemented� in most sys-
tems

* Pretend nothing special
is happening

* (E.g., Java VMs act like
ostriches)

� Reasoning

* Proper deadlock han-
dling is complex

* Deadlocks are rare, re-
sult from buggy pro-
grams

(Refresh HTML presentation for other
drawings)

4.3 Deadlock Prevention

� Prevent a de�ning condition for deadlocks from becoming true

� Practical options

� Prevent condition (2), �hold and wait�: Request all necessary re-
sources at once

* Only possible in special cases, e.g., conservative/static 2PL in
DBMS

* Threads either have no incoming or no outgoing edges in resource
allocation graph → Cycles cannot occur

� Prevent condition (4), �circular wait�: Number resources, request
resources according to linear resource ordering

* Consider resources Rh and Rk with h < k

· Threads that need both resources must lock Rh �rst

· Threads that already requested Rk do not request Rh after-
wards

* Requests for resources in ascending order → Cycles cannot occur

A strategy for deadlocks is called prevention strategy if it prevents deadlocks from hap-
pening by making sure that one of the four de�ning deadlock conditions can never become
true. Although there are four conditions, only two of them are used for practical purposes,
and they are explained in the subsequent bullet points. Please think about those bullet points
on your own.

4.3.1 Linear Resource Ordering Example

� Money transfers between bank accounts revisited

� Locks acquired in order of account numbers
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Figure 8: Drawing created by Adrian Lison for bonus task in summer term 2017;
released into Public Domain; other excellent drawings.
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� A programming contract, not known by OS

� Suppose myAccount has number 42, yourAccount is 4711

* Both threads try to lock myAccount �rst (as 42 < 4711)

· Only one succeeds, can also lock yourAccount

· The other thread gets blocked

� No deadlock

� (See Fig 4.21 in [Hai19] for an example of linear ordering in the context
of the Linux scheduler)

4.4 Deadlock Avoidance

� (See stackexchange for di�erence between prevent and avoid)

� Dynamic decision whether allocation may lead to deadlock

� If a deadlock cannot be ruled out easily: Do not perform that allo-
cation but block the requesting thread (or return error code or raise
exception)

� Consequently, deadlocks do never occur; they are avoided

� Classical technique

� Banker's algorithm by Dijkstra

* Deny incremental allocation if �unsafe� state would arise

* Not used in practice

· Resources and threads' requirements need to be declared
ahead of time

A strategy for deadlocks is called avoidance strategy if it avoids deadlocks. Personally, I
don't see much di�erence between the words �prevent� and �avoid�, but this terminology is
accepted in the literature on deadlocks.

Avoidance does not rule out any speci�c of the four de�ning deadlock conditions, but it
still makes sure that deadlocks will not happen. The typical approach is to analyze resource
requests by threads. If some deadlock avoidance algorithm is able to rule out a deadlock
for the resulting state, the request will be granted. If the algorithm is not able to rule out
deadlocks, the request will not be granted. Note that such algorithms generally err on the safe
side. Thus, some requests might not be granted although they would not cause any deadlock;
the OS might be unable to detect this, though.

A famous deadlock avoidance technique is Dijkstra's banker's algorithm, which has quite
restrictive preconditions and is therefore not used in practice.

4.5 Deadlock Detection

� Idea

� Let deadlocks happen

� Detect deadlocks, e.g., via cycle-check on resource allocation graph

* Periodically or

* After �unreasonably long� waiting time for lock or

* Immediately when thread tries to acquire a locked mutex
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� Resolve deadlocks: typically, terminate some thread(s)

� Prerequisite to build graph

� Mutex records by which thread it is locked (if any)

� OS records for what mutex a thread is waiting

The �nal strategy for dealing with deadlocks is deadlock detection. Here, the system does
not take special precautions to avoid or prevent deadlocks but lets them happen. To deal
with deadlocks, they are detected, for example based on cycle checks on resource allocation
graphs, and then resolved. Detection may take place periodically or after waiting times or
even immediately upon resource requests; the latter actually prevents cyclic wait conditions,
moving from deadlock detection to deadlock prevention. To resolve deadlocks, the OS typically
terminates some threads until no cycle exists any longer, and various strategies exist to select
victim threads.

Clearly, the OS needs to build suitable data structures for deadlock detection, in case of
resource allocation graphs, each mutex can easily record by which thread it is locked, while
the OS also keeps track of what threads are waiting for what mutexes.

5 Further Challenges

5.1 Convoy Problem

� Suppose a central shared resource R exists

� Frequently accessed by lots of threads, protected by mutex M

� Preemption of thread T1 holding that mutex is likely

� Other threads wind up in wait queue of mutex, the convoy

* Thread switches without much progress

* (See [Bla+79] for origin of �convoy� in context of database trans-
actions)

� Suppose T1 continues

� T1 releases lock, which is reassigned to T2

� During its time slice, T1 wants R again, but M is now held by T2

* T1 gets blocked without much progress

� The same happens to the other threads

� The convoy persists for a long time

The previous explanations of unlock() (here and there) hinted at two alternatives to
reassign unlocked locks.

The bullet points here argue that immediate reassignment of locks is bad for frequently
used resources: Here, lots of threads�among them T1 and T2�need the same shared resource,
say R. T1 currently holds the mutex M that is used for MX on R, and T2 is blocked, waiting
for M to be unlocked. If (a) T1 unlocks M and (b) the OS immediately assigns the mutex to
T2 (making T2 runnable but without any scheduling decision yet, so T1 continues to run),
then T1 cannot access R again during its time slice, but will be blocked when trying to lock
M.

If R is accessed frequently, threads will not be able to use much of their time slices, leading
to frequent context switches without much progress in individual threads. The threads blocked
on M are collected in a queue, which is called convoy.

A simple �x is explained on the next slide: When M is unlocked by T1, the OS (a) changes
the states of all threads that are blocked on M (including T2) to runnable, but (b) does not
reassign the mutex. Thus, when T1 needs R again during its time slice, it can simply lock M
and proceed without problems.
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5.1.1 A Convoy Solution

� Change mutex behavior

� Proposed in [Bla+79]

� Do no immediately reassign mutex upon unlock()

� Instead, make all waiting threads runnable

* Without reassigning mutex

� (In addition, for performance reasons in case of failing locking at-
tempt [Bla+79] suggests �to spin for a few instructions in the hope
that the lock will become free�)

� E�ect: T1 can lock() M repeatedly during its time slice

5.2 Starvation

� A thread starves if its resource requests are repeatedly denied

� Examples in previous presentations

� Interrupt livelock

� Thread with low priority in presence of high priority threads

� Thread which cannot enter CS

* Famous illustration: Dining philosophers (next slide)

* No simple solutions

The term starvation occurred on several occasions already, where threads could not
continue their execution as expected but were preempted or blocked frequently or for prolonged
periods of time. When locking is involved, avoidance of starvation is a hard problem without
simple solutions as illustrated next.

5.2.1 Dining Philosophers

� MX problem proposed by Dijkstra

� Philosophers sit in circle; eat and think repeatedly

� Two forks required for eating

* MX for forks
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Figure 9: Dining Philosophers (�Figure 4.20 of [Hai17]� by Max Hailperin under
CC BY-SA 3.0; converted from GitHub)

A famous illustration of starvation, which alludes to the literal meaning of the word,
goes back to Dijkstra. Here, philosophers need forks to eat, and forks are protected by
some MX mechanism. If the underlying algorithm to protect and reassign forks does not
prevent starvation, one or more philosophers may die from hunger as they do not receive forks
frequently enough.

Lots of textbooks on OS include algorithms for the dining philosophers to explain MX,
deadlocks, and starvation. Inspired by an exercise in [Sta01], the following slide shows a
sequence of events that can happen for the deadlock-free algorithm presented in [Tan01],
leading to starvation of a philosopher.

Apparently, avoidance of starvation is no simple task.

5.2.2 Starving Philosophers

� Starvation of P0
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Figure 10: �Figure 4.20 of [Hai17]� by Max Hailperin under CC BY-SA 3.0;
converted from GitHub

� P1 and P3 or P2 and P4 eat in parallel

� Then they wake the other pair

* P1 wakes P2; P3 wakes P4

* P2 wakes P1; P4 wakes P3

� Iterate

6 Conclusions

6.1 Summary

� MX to avoid race conditions

� Challenges

� Priority inversion

� Deadlocks

� Convoys

� Starvation
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