
OS01: OS Introduction
*

Partially based on Chapter 1 of [Hai19]

Jens Lechtenbörger

Computer Structures and Operating Systems 2023

Contents

1 Introduction 1

2 Operating Systems 3

3 Multitasking 8

4 Conclusions 13

1 Introduction

1.1 Learning Objectives

� Explain notion of Operating System and its goals

� Explain notion of kernel with system call API

* (More details in next presentation)

� Explain notions and relationships of process, thread, multitasking

Learning objectives specify what you should be able to do after having worked through a
presentation. Thus, they o�er guidance for your learning.

Each learning objective consists of two major components, namely an action verb and
a topic. Action verbs specify what actions you should be able to perform concerning the
topic, and they indicate the target level of skill (in Bloom's Taxonomy or its revised version
as sketched under the hyperlink above).

You may want to think of learning objectives as sample exam tasks.

1.2 Recall: Big Picture of CSOS

� Computer Structures and Operating Systems (CSOS)

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/
https://oer.gitlab.io/OS/Operating-Systems-Introduction.html
https://gitlab.com/oer/OS
https://gitlab.com/oer/OS


� CS: How to build a computer from logic gates?

Figure 1: �NAND� under CC0 1.0; from GitLab

* Von Neumann architecture

* CPU (ALU), RAM, I/O

Figure 2: �CPU� under CC0 1.0; cropped and converted from Pixabay

� OS: What abstractions do Operating Systems provide for applica-
tions?

* Processes and threads with scheduling and concurrency, virtual
memory

Figure 3: �Pong in TECS VM� under GPLv2; screenshot of VM of TECS soft-
ware suite

* What is currently executing why and where, using what resources
how?

1.2.1 OS Responsibilities

Warning! External �gure not included: �What does your OS even do?� ©
2016 Julia Evans, all rights reserved from julia's drawings. Displayed here with
personal permission.
(See HTML presentation instead.)

Several OS presentations contain awesome drawings by Julia Evans such as this one. In
general, these drawings are meant to speak for themselves as additional perspective on class
topics (or even beyond class topics), and they come without any explanation.

Except for this additional context, this drawing would not be accompanied by a note. It
shows typical services provided by OSs and to be used by programs. The interface between
programs and OS will be revisited as API of so-called �system calls�.

2

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/blob/master/gates/tikz/nand.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://pixabay.com/en/cpu-processor-macro-pen-pin-564771/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.nand2tetris.org/software
https://www.nand2tetris.org/software
https://drawings.jvns.ca/os-responsibilities/


2 Operating Systems

2.1 Sample Modern Operating Systems

� Di�erent systems for di�erent scenarios

� Mainframes

* BS2000/OSD, GCOS, z/OS

� PCs

* MS-DOS, GNU/Linux, MacOS, Redox, Windows

� Mobile devices

* Variants of other OSs

* Separate developments, e.g., BlackBerry (BlackBerry 10 based
on QNX, abandoned), Google Fuchsia, Symbian (Nokia, most
popular smartphone OS until 2010, now replaced)

� Gaming devices

� Real-time OS

* Embedded systems

* L4 variants, FreeRTOS, QNX, VxWorks

There is a vast variety of OSs for di�erent devices and usage scenarios, of which this slide
shows a selection.

The goal of the OS sessions is not to turn you into an expert for any speci�c OS, but to
teach you major concepts and techniques that are shared by most modern OSs. As explained
previously my hope is that you can apply your knowledge on the one hand when designing,
analyzing, or implementing information systems and on the other when taking control of your
own devices.

Based on my personal beliefs, I will not teach you anything about non-free OSs (except
maybe �rst steps to get away from them). In particular, examples shown in presentations and
in class will be based on the free OS GNU/Linux. As GNU/Linux is free, you can experiment
with it at any level of detail yourself.

2.2 De�nition of Operating System

� De�nition from [Hai19]: Software

� that uses hardware resources of a computer system

� to provide support for the execution of other software.

Figure 4: �Figure 1.1 of [Hai17]� by Max Hailperin under CC BY-SA 3.0; con-
verted from GitHub

3

https://en.wikipedia.org/wiki/BS2000
https://en.wikipedia.org/wiki/General_Comprehensive_Operating_System
https://en.wikipedia.org/wiki/Z/OS
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/GNU%2FLinux_naming_controversy
https://en.wikipedia.org/wiki/MacOS
https://www.redox-os.org
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/BlackBerry_10
https://en.wikipedia.org/wiki/Google_Fuchsia
https://en.wikipedia.org/wiki/Symbian
https://en.wikipedia.org/wiki/FreeRTOS
https://en.wikipedia.org/wiki/QNX
https://en.wikipedia.org/wiki/VxWorks
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0101.pdf


Part (a) of the �gure shows the situation of a computer without an OS. Here, applications
(and programmers) need to interact with hardware directly at a low level of abstraction. This
is what you did on Hack. E.g., you needed to know a speci�c memory location to access the
keyboard.

Part (b) illustrates typical services provided by an OS to shield applications (and pro-
grammers) from hardware-speci�c details. E.g., multiple applications may run concurrently,
interact as parts of distributed systems with networking functionality, or share persistent
storage at the abstraction of �le systems (without needing to worry about, say, speci�cs of
particular keyboards, disks, or network cards and their interfaces).

What you see here is a typical example of layering to hide lower-layer details with the
abstractions of an interface in software engineering: The OS provides an API (see next slide)
of functions that application programmers can invoke to access OS services, in particular to
access underlying hardware. As explained later, that API is provided by a core part of the
OS, which is called kernel and whose functions are called system calls.

2.2.1 Aside: API

� API = Application Programming Interface

� Set of functions or interfaces or protocols de�ning how to use some
system (as programmer)

� E.g., Java 18 API

* Packages with classes, interfaces, methods, etc.

2.2.2 OS Services

� OS services/features/functionality de�ned by its API

� Functionality includes

� Support for multiple concurrent computations

* Run programs, divide hardware, manage state

� Control interactions between concurrent computations

* E.g., locking, private memory

� Typically, also networking support

Figure 5: �Figure 1.1 of [Hai17]� by Max Hailperin under CC BY-SA 3.0; con-
verted from GitHub

4

https://en.wikipedia.org/wiki/Application_programming_interface
https://docs.oracle.com/en/java/javase/18/docs/api/index.html
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0101.pdf


2.3 OS, Kernel, User Interface

� Boundary between OS and applications is fuzzy

� Kernel is fundamental, core part of OS

� Kernel de�nes API and services via system call interface

� (More details on next and later slide)

� User interface (UI; not part of kernel)

� UI = process(es) using kernel functionality to handle user input,
start programs, produce output, . . .

* User input: Voice, touch, keyboard, mouse, etc.

* Typical UIs: Command line, explorer for Windows, various desk-
top environments for GNU/Linux, virtual assistants

� Note: OSs for embedded systems may not have UI at all

2.3.1 How to Talk to OSs

Warning! External �gure not included: �How to talk to your operating system�
© 2016 Julia Evans, all rights reserved from julia's drawings. Displayed here
with personal permission.
(See HTML presentation instead.)

System calls are an important concept as they de�ne the services provided by an OS kernel
in terms of an API. Here, you see names of sample system calls, which are not important to
remember but which might help to shape your understanding, before system calls are revisited
subsequently.

2.3.2 User Space and Kernel Space

Warning! External �gure not included: �User space vs. kernel space� ©
2016 Julia Evans, all rights reserved from julia's drawings. Displayed here with
personal permission.
(See HTML presentation instead.)

This drawing introduces a distinction between user space and kernel space, which is
revisited on a later slide and in the next presentation. Brie�y, in kernel space the OS has full
control over the underlying hardware, while applications running in user space need to invoke
system calls to ask the OS to perform more privileged operations (e.g., to receive input from
hardware devices or to write to them as illustrated for a sample �le access here).

System calls lead to so-called context switches between di�erent execution contexts, here
between user space and kernel space (and back), which will be revisited in later presentations
when discussing interrupt handling and thread switching.

2.3.3 OS Size

� From [TB15]

� Size of source code of the heart Windows or GNU/Linux is about 5
million lines of code

* Think of book with 50 lines per page, 1000 pages

* Need 100 books or an entire bookcase

� Windows with essential shared libraries is about 70 million lines
of code

5

https://en.wikipedia.org/wiki/Virtual_assistant
https://drawings.jvns.ca/syscalls/
https://drawings.jvns.ca/userspace/


* 10 to 20 bookcases

� How to understand or maintain that?

� → Abstraction, layering, modularization

2.4 OS Architecture and Kernel Variants

Figure 6: �Monolith-, Micro- and a "hybrid" kernel� under CC0 1.0; from Wiki-
media Commons

This map of the Linux kernel provides a real-life monolithic example
This �gure shows di�erent approaches towards layering and modularization in the context

of OS kernels. First of all, note the common layers, namely applications at the top and
hardware at the bottom.

In between are di�erent layers related to what we think of as OS functionality. Note that
this OS functionality is marked with a red (left) and yellow (middle and right) background
labeled �kernel mode� and �user mode�, respectively. These modes refer to di�erent CPU
privilege levels, which will be discussed in the next presentation; for now it is su�cient to
know that code running in kernel mode has full control over the underlying hardware, while
code running in user mode is restricted and needs to invoke lower layers (that run in kernel
mode) for certain functionality.

At one extreme, shown in the middle here, are so-called micro kernels, which just provide
the minimal functionality and services as foundation for full-�edged OSs. Typical functionality
that we expect from OSs, such as �le services or hardware independent network access, is then
not implemented in the kernel but in user mode processes or servers. The L4 family mentioned
later on as well as Fuchsia provide examples for micro kernels.

The other extreme is made up of so-called monolithic kernels, which provide (almost)
everything that we expect from OSs. For modularization, such kernels may be structured in
a sequence of layers, where the top layer provides the system call API to be explained on
subsequent slides, while the bottom layer implements device driver abstractions to hide hard-
ware peculiarities. Intermediate layers o�er levels of abstraction on the way from hardware
to application facing functionality. GNU/Linux and Windows come with monolithic kernels.

Finally, hybrid kernels (e.g., Windows NT) can be built as trade-o� between both extreme
approaches.

2.4.1 OS Kernel

� OS runs as code on CPU

� Just as any other program

� Kernel contains central part of OS

� Provides API for OS services via system calls (next slide)

� Code and data of kernel typically main memory resident

� Kernel functionality runs in kernel mode of CPU, reacts to system
calls and interrupts

6

https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:OS-structure2.svg
https://commons.wikimedia.org/wiki/File:OS-structure2.svg
https://makelinux.github.io/kernel/map/
https://en.wikipedia.org/wiki/Hybrid_kernel


* Details in next presentation

� Variants (previous slide)

* Monolithic (�large,� all OS related services)

* Micro kernel (�small,� only necessary services)

* �Best� design subject to research

· Provable security only with micro kernels (seL4)

2.4.2 System Calls

� System call = function = part of kernel API

� Implementation of OS service

* E.g., process execution, main memory allocation, hardware re-
source access (e.g., keyboard, network, �le and disk, graphics
card)

� Di�erent OSs o�er di�erent system calls (i.e., o�er incompatible APIs)

� With di�erent implementations

� With di�erent calling conventions

2.4.3 Sample Microkernel: L4

� L4, developed by Jochen Liedtke, late 1990s

� Liedtke's 4th system (after Algol interpreter, Eumel, and L3)

� Now with family of L4 based kernels

� Notable properties

* 12 KB source code

· (Vs 918 KB for (heavily compressed) source code of Linux
1.0 in 1994)

* 7 system calls

* Abstractions: Address space, Threads, Inter-Process-Communication
(IPC)

� Breakthrough result in 2009, [Kle+09]: Formal veri�cation of the OS
kernel seL4

� Mathematical proof of correctness

* Updates/patches are a thing of the past

� More recent description in [Kle+14]

This slide contains some details about the micro kernel L4. First of all, note its size
of 12 KB. In contrast, the (heavily compressed) source code of Linux 1.0 had a size of 918
KB in 1994 (which has grown to 113 MB for Linux 5.12 in 2021). Thus, 12 KB is really
small for software, which in this case contains necessary kernel functionality regarding the
creation of threads for multitasking as well as their memory use via address spaces and their
communication.

The question of what constitutes a minimal OS kernel is not just an academic one. In
fact, for smaller pieces of software we can hope to perform mathematical correctness proofs for
their functionality. Indeed, a break-through result was achieved in 2009, when the correctness

7

https://en.wikipedia.org/wiki/L4_microkernel_family
https://mirrors.edge.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.xz
https://sel4.systems/
https://mirrors.edge.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.12.tar.xz


of the L4 variant seL4 was formally veri�ed. Please take a moment to think about this fact.
Such software will never need to be patched to �x bugs. Bugs do not exist.

What I would like you to remember is that formally veri�ed software exists, and it exists
up to the complexity of micro kernels. Thus, if you should ever �nd yourself in a position
where you are responsible for the correctness of software, say for autonomous devices or critical
infrastructures, you should remember that the state-of-the-art makes it hard to �nd an excuse
for buggy software and resulting system failures.

As stated on the next slide, L4 variants are actually deployed in billions of devices.

� L4 variants today

� OKL4, deployed in over 2 billion devices

* OS for baseband processor (modem, management of radio func-
tions)

· Starting with Qualcomm

* Embedded, mobile, IoT, automotive, defense, medical, indus-
trial, and enterprise applications

� Another variant in Apple's Secure Enclave coprocessor (see PDF on
this page)

* A7 processor (iPhone 5S, iPad mini 3) and later

� Airbus 350, Merkelphone

� Project Sparrow based on seL4

3 Multitasking

3.1 Multitasking

� Fundamental OS service: Multitasking

� Manage multiple computations going on at the same time

� E.g., surf on Web while Java project is built and music plays

� OS supports multitasking via scheduling

� Decide what computation to execute when on what CPU core

* Recall: Frequently per second, time-sliced, beyond human per-
ception

� Multitasking introduces concurrency

� (Details and challenges in upcoming sessions)

� Recall: Even with single CPU core, illusion of �simultaneous� or �par-
allel� computations

* (Later presentation: Advantages include improved responsive-
ness and improved resource usage)

8

https://gdmissionsystems.com/products/cross-domain-solutions/hypervisor
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://github.com/AmbiML/sparrow-manifest


3.2 Computations

� Various technical terms for �computations�: Jobs, tasks, processes, threads,
. . .

� We use only thread and process

� Process

* Container for related threads and their resources

* Created upon start of program and by programs (child processes)

* Unit of management and protection (threads from di�erent pro-
cesses are isolated from another)

� Thread

* Sequence of instructions (to be executed on CPU core)

* Single process may contain just one or several threads, e.g.:

· Online game: di�erent threads with di�erent code for game
AI, GUI events, network handling

· Web server handling requests from di�erent clients in di�er-
ent threads sharing same code

* Unit of scheduling and concurrency

(Audio for this slide is split into several audio �les, one for each step of the animation. In
contrast, these notes contain a transcript of all animation steps.)

Among the various technical terms that can be used for the computations going on in our
machines, we are only interested in process and thread as explained here and on subsequent
slides. The speci�cs of processes and threads vary from OS to OS, and, in fact, some OSs
may not know either of both notions. We only consider OSs that support multiple processes,
each of which can contain multiple threads.

Roughly, when you execute a program, e.g., a Java program, your OS creates a process
to manage computations and resources associated with that program. (As revisited later, the
situation is more complex, though, as a single program can ask the OS (via system calls) to
create lots of processes.)

Importantly, the OS isolates di�erent processes from each other so that they are protected
from malicious and accidental actions of other processes. (In theory, the crash of one process
should not a�ect any other process; in practice, security issues usually violate this goal of
isolation.)

In any case, when you start a program, the OS creates a process for that program, and it
also creates a thread to execute the program's instructions. The programmer is free (to ask
the OS via system calls) to create more threads that execute in the context of the same process
and, thus, can share resources and data structures of their process. A later presentation will
address how to create threads in Java, where you invoke functions of the Java API to create
threads, which in turn are implemented with systems calls in the Java runtime.

The OS keeps track of all existing threads and schedules them for execution on CPU
cores. Recall that scheduling usually involves time slicing, which leads to the illusion of a
parallel execution of all threads (even on a single-core system) and which will be revisited in
the presentation on scheduling.

3.2.1 Threads!

Warning! External �gure not included: �Threads!� © 2016 Julia Evans, all
rights reserved from julia's drawings. Displayed here with personal permission.
(See HTML presentation instead.)

9

https://drawings.jvns.ca/threads/


3.2.2 Process Aspects (1/3)

Warning! External �gure not included: �What's in a process?� © 2016 Julia
Evans, all rights reserved from julia's drawings. Displayed here with personal
permission.
(See HTML presentation instead.)

3.2.3 Process Aspects (2/3)

� Approximately, process ≈ running program

� E.g., text editor, game, audio player

� OS manages lots of them simultaneously

� Really, process = �whatever your OS manages as such�

� OS speci�c tools to inspect processes (research on your own!)

3.2.4 Process Aspects (3/3)

� Single program may create multiple processes, e.g.:

� Apache Web server with �process per request� (MPM prefork)

� Web browsers with �process per tab� or separation of UI and web
content

* E.g., Firefox with projects Electrolysis and Project Fission

� Many-to-many relationship between �applications� and processes

� E.g., GNU Emacs provides lots of �applications�

* Core process includes: Text editor, chat/mail/news/RSS clients,
Web browser, calendar

· Neal Stephenson, 1999: �emacs outshines all other editing
software in approximately the same way that the noonday
sun does the stars. It is not just bigger and brighter; it
simply makes everything else vanish.�

* On-demand child processes: Spell checker, compilers, PDF viewer

10

https://drawings.jvns.ca/process/
https://httpd.apache.org/docs/2.4/mod/prefork.html
https://wiki.mozilla.org/Electrolysis
https://wiki.mozilla.org/Project_Fission
https://www.gnu.org/software/emacs/
https://web.archive.org/web/20180218045352/http://www.cryptonomicon.com/beginning.html


3.3 Processes vs Threads

Figure 7: Classi�cation of Processes and Threads from Anderson et al. (1997)

This �gure shows a classi�cation of platforms or execution environments for processes and
threads from [And+97]. Note that although all threads are represented using the same curved
line for graphical simplicity, each thread shown in the �gure can actually execute its own
instructions, independently from all other threads. Furthermore, although multiple threads
are shown in parallel, no assumptions are made whether their instructions are really executed

in parallel; clearly, parallel execution requires hardware support, e.g., in the form of multiple
CPU cores, as well as OS support.

As shown in quadrant Q2, a platform may be characterized as supporting just a single
process with a single thread, which e�ectively means that it has no notion of process or
thread at all but just happily executes whatever instructions are there in one undi�erentiated
context. Thus, multitasking is not supported. Actually, the CS part of CSOS introduced one
such platform . . .

Q1 indicates multiple threads executing inside a single process, which may appear strange
at �rst sight, but you actually also know one such execution environment quite well. You
should not think about platforms consisting of hardware with OS here but about execution
environments that can be started inside OSs . . .

Q3 captures platforms with multiple single-threaded processes. Again, if everything is
single-threaded, then the platform actually does not support threads, but just schedules pro-
cesses for execution. This is mostly the case for older OSs.

Finally, Q4 contains multiple processes which in turn can host multiple threads. This is
what we take for granted in upcoming OS sessions.

3.4 Exercises and Self-Study Tasks

3.4.1 Processes and threads

This task is available for self-study in Learnweb.
Sort sample OSs into the quadrants of Anderson et al.

11

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=68583#section-8


� Hack, MS-DOS, Java Virtual Machine, Windows 10, GNU/Linux, GNU/Linux
prior kernel 1.3.56, GNU/Linux starting with kernel 1.3.56

� It is no problem if you do not know those environments and guess
for this task

� MS-DOS dates back to the 1980s, the GNU/Linux kernel 1.3.56 to
1996

* Use educated guessing there ;)

3.4.2 Exercise Outlook: Bash Command Line

� Investigate The Command Line Murders among �rst OS exercises

� Game, which teaches use of the Bash command line

� Command line = shell = text-mode user interface for OS

* Create processes for programs or scripts

� Di�erent shells come with incompatible features

* Game supposes Bash in combination with typical GNU/Unix
tools (e.g., grep, head, tail)

* See next slide for some options

� Task

� Access �les for game

* Download or clone with git clone https://github.com/veltman/clmystery.git

� Start playing game according to its README

* See next slide for hints

� While investigating the case, you need to search �les for clues, learn-
ing essential commands and patterns along the way

� We will ask you to submit some command(s)

� (Command line examples show up throughout this course; details of �le
handling to be revisited in presentation on processes)

3.4.3 Using Bash as Command Line

� Where/how to start Bash as command line

� Built-in with GNU/Linux; use own (virtual) machine

� Alternatively, students reported success with Windows Subsystem
for Linux/Ubuntu on Windows

� Alternatives without Linux kernel (no or incomplete /proc for later
presentations)

* Maybe use Cygwin according to hints in game's cheatsheet, but
note that more students report problems with Cygwin than
with Windows Subsystem for Linux/Ubuntu mentioned above

* Shell coming with Git for Windows

* Terminal of macOS

12

https://github.com/veltman/clmystery
https://github.com/veltman/clmystery/archive/master.zip
https://github.com/veltman/clmystery/blob/master/README.md
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
https://github.com/veltman/clmystery/blob/master/cheatsheet.md
https://gitforwindows.org/
https://en.wikipedia.org/wiki/Terminal_(macOS)


� Basic hints for The Command Line Murders

� Game's cheatsheet is misnamed; it contains essential information to
get you started

* Open in editor

� Once on command line, maybe try this �rst:

* mount to show �lesystems, e.g., with Cygwin, the location of C:
may be shown as /cygdrive/c

* ls (short for �list�) to view contents of current directory

* ls /cygdrive/c to view contents of given directory (if it exists)

* Beware! Avoid spaces in names of �les and directories: Space
character separates arguments (need to escape spaces with back-
slash or use quotation marks around name)

* pwd (short for �print working directory�) to print name of current
directory

* cd replace-this-with-name-of-directory-of-mystery (short
for �change directory�) to change directory to chosen location,
e.g., location of mystery's �les

* man name-of-command shows manual page for name-of-command

* Try man man �rst, then man ls

� Afterwards, follow game's README

* (Which supposes that you changed to the directory with the
game's �les already)

3.4.4 Feedback

� This slide serves as reminder that I am happy to obtain and provide feed-
back for course topics and organization. If contents of presentations are
confusing, you could describe your current understanding (which might
allow us to identify misunderstandings), ask questions that allow us to
help you, or suggest improvements (maybe on GitLab). Please use the
session's shared document or MoodleOver�ow. Most questions turn out
to be of general interest; please do not hesitate to ask and answer where
others can bene�t. If you created additional original content that might
help others (e.g., a new exercise, an experiment, explanations concerning
relationships with di�erent courses, . . . ), please share.

4 Conclusions

4.1 Summary

� OS is software

� that uses hardware resources of a computer system

� to provide support for the execution of other software.

* Computations are performed by threads.

* Threads are grouped into processes.

13

https://github.com/veltman/clmystery
https://github.com/veltman/clmystery/blob/master/cheatsheet.md
https://github.com/veltman/clmystery/blob/master/README.md
https://gitlab.com/oer/OS


� OS kernel

� provides interface for applications and

� manages resources.

Bibliography

[And+97] Thomas E. Anderson et al. �Thread Management for Shared-Memory
Multiprocessors�. In: The Computer Science and Engineering Hand-

book. Ed. by Allen B. Tucker. CRC Press, 1997. url: https://
homes.cs.washington.edu/~tom/pubs/threads.pdf.

[Hai17] Max Hailperin. Operating Systems and Middleware � Supporting

Controlled Interaction. revised edition 1.3, 2017. url: https://
gustavus.edu/mcs/max/os-book/.

[Hai19] Max Hailperin. Operating Systems and Middleware � Supporting

Controlled Interaction. revised edition 1.3.1, 2019. url: https://
gustavus.edu/mcs/max/os-book/.

[Kle+09] Gerwin Klein et al. �seL4: Formal Veri�cation of an OS Kernel�.
In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating

Systems Principles. SOSP '09. Big Sky, Montana, USA: ACM, 2009,
pp. 207�220. isbn: 978-1-60558-752-3. doi: 10 . 1145 / 1629575 .

1629596. url: https : / / dl . acm . org / citation . cfm ? doid =

1629575.1629596.

[Kle+14] Gerwin Klein et al. �Comprehensive Formal Veri�cation of an OS
Microkernel�. In: ACM Trans. Comput. Syst. 32.1 (Feb. 2014), 2:1�
2:70. issn: 0734-2071. doi: 10.1145/2560537. url: https://dl.
acm.org/citation.cfm?doid=2560537.

[TB15] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Sys-

tems. 4th ed. Pearson, 2015.

License Information

This document is part of an Open Educational Resource (OER) course on Op-
erating Systems. Source code and source �les are available on GitLab under
free licenses.

Except where otherwise noted, the work �OS01: OS Introduction�, © 2017-
2023 Jens Lechtenbörger, is published under the Creative Commons license CC
BY-SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., �Creative Commons� itself) remain with their respective holders.

14

https://homes.cs.washington.edu/~tom/pubs/threads.pdf
https://homes.cs.washington.edu/~tom/pubs/threads.pdf
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://dl.acm.org/citation.cfm?doid=1629575.1629596
https://dl.acm.org/citation.cfm?doid=1629575.1629596
https://doi.org/10.1145/2560537
https://dl.acm.org/citation.cfm?doid=2560537
https://dl.acm.org/citation.cfm?doid=2560537
https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding

	Introduction
	Operating Systems
	Multitasking
	Conclusions

