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1 Introduction

1.1 OS Plan
� OS Overview (Wk 20)

� OS Introduction (Wk 21)

� Interrupts and I/O (Wk 21)

� Threads (Wk 23)

� Thread Scheduling (Wk 24)

� Mutual Exclusion (MX) (Wk 25)

� MX in Java (Wk 25)

� MX Challenges (Wk 25)

� Virtual Memory I (Wk 26)

� Virtual Memory II (Wk 26)

� Processes (Wk 27)

� Security (Wk 28)

Figure 1: OS course plan, summer 2022

1.2 Today's Core Questions

� Recall keyboard handling in Hack.

� You used a loop to wait for I/O; this is called polling.

* Fill.asm of project 4.

� How can we improve I/O processing over polling?

� Why keep CPU busy in loop when nothing happens?

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.
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� With multitasking such time is wasted as other tasks could make
better use of the CPU.

� Add interrupts as I/O noti�cation mechanism.

� How to organize I/O then?

� How much overhead arises?

* (Overhead: Additional indirect computation time; makes system
less e�cient.)

* How to deal with �lots� of I/O events?

1.3 Learning Objectives

� Explain techniques for I/O communication

� Including sequencing of events under synchronous and asynchronous
techniques (polling vs interrupts)

� Discuss dis/advantages of I/O communication techniques

� Explain (interrupt) livelock and mitigation via hybrid technique

1.4 A Note on Literature

� As an exception, this presentation is not based on [Hai19].

� In [Hai19], Section 2.5 contains some introductory paragraphs on
interrupts, while Section 7.3.1 starts with explanations on privilege
levels and system calls.

� Chapter 1 of [Sta14] as well of [TB15] contain introductions on interrupts
and I/O, while Section 5.1 of [TB15] has additional explanations.

1.5 Retrieval Practice

� Before you continue, answer the following; ideally, without outside help.

� How does the von Neumann architecture look like?

� How does I/O processing work with Hack?

� How to talk to an OS kernel?

� How are programs, processes, and threads related?

� What is multitasking? What are its advantages?
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1.5.1 Von Neumann and Hack Architecture

1.5.2 Computations

Table of Contents

2 Hack vs Modern Computers

2.1 Recall: Von Neumann Architecture

Figure 2: �von Neumann Architecture� by Kapooht under CC BY-SA 3.0; con-
verted from Wikimedia Commons

2.2 Hack vs Modern Computer

Modern Computer
Hack (e.g., PC, smartphone)

Memory � RAM for data, ROM for instructions � RAM for data and instructions
� Physical RAM addresses � Physical and virtual addresses
� No secondary memory � Memory hierarchy (disks)

CPU � Single core � Multi-core
� Single mode of execution � Multiple protection domains
� Neither cache nor MMU � Caches and MMU

I/O � No interrupts � Interrupts, DMA
� Polling for I/O (recall keyboard) � Di�erent options for I/O

OS � Language library � Real OSs with system calls
� Single thread, no multitasking � Multitasking, scheduling
� No virtual memory � Virtual memory

This slide highlights key di�erences between the Hack platform and modern computers.
We have already seen that data and instructions are kept separately in Hack, which is called
the Harvard architecture, while modern Computers keep data and instructions in RAM, which
follows more closely the original von Neumann design. Then you know that in Hack there are
physical RAM addresses which are the bits that are actually fed into the memory chips, while
modern CPUs also support virtual addresses, which will be the topic of a separate lecture.
Also, modern computers come with a memory hierarchy, in particular including stable storage
which is absent in the case of Hack. Then modern CPUs typically contain multiple cores; each
of which you can think of as a full-�edged Hack CPU. In addition, modern CPUs support
multiple protection domains which for example allows to protect the operating system from
interference of user applications. Also, modern CPUs contain a memory management unit
which is used in the context of virtual addresses and which therefore will also come back in
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later lectures. With respect to I/O processing you already saw the programming technique
called polling in the Hack platform to access the keyboard and you can also do something
like that in modern computers. However, they also support interrupts and so-called direct
memory access which requires additional hardware and is used for bulk transfer of data for
example in the context of graphics cards. So, modern computers support di�erent types of
I/O processing and this will be the topic for today. Finally, with respect to operating systems,
Hack does not really have any operating system in a modern sense. If you take a look at the
�nal book chapter, you'll see something called operating system but it's really just a language
library and it does not support any of the major features of modern operating systems, such
as multitasking or virtual memory.

2.3 CPUs in the Real World

� Known from Hack

� Registers (addresses, data, control information)

� Instruction execution cycle (e.g., fetch, decode, execute)

� Additionally

� Caching

* Cache = Small, fast memory between CPU and RAM

· (Usually, multiple levels of caches; L1, L2, . . . )

* Instructions and data must be in cache before CPU can access
them

· Replacement policies when full (similar to those for memory
management)

· Overhead for context switches, cache pollution

� Special instructions and modes

* Access to memory and devices in kernel mode: Subsequent slide

* Enter idle state when nothing to do (save power)

� Interrupts: Later slides

(Audio for this slide is split into several audio �les, one for each step of the animation. In
contrast, these notes contain a transcript of all animation steps. The same is true for other
animations.)

Modern CPUs have several characteristics that are important in the contexts of OSs and
performance. First, you know that according to the von Neumann architecture, the CPU
fetches instructions for execution from RAM. Nowadays, CPUs are equipped with additional,
fast but small memory chips called caches, which sit between RAM and processors, and data
and instructions are loaded from RAM to a cache before the CPU accesses them. Subsequent
accesses to cached data or instructions are much faster than original accesses in RAM, im-
proving performance considerably. (Usually, there is even a hierarchy of multiple caches of
decreasing size and increasing speed between RAM and CPU, but this is not important for
our purposes. You can �nd latency estimates on Stack Over�ow.)

As caches are small, they come with replacement policies in situations where the cache is
full and new contents need to replace old contents. We will see such policies in the context
of memory management later on; if you are interested in details, maybe check out cache
coherence protocols on Wikipedia.

For now, note that computations are fast if lots of memory accesses can be served from
caches instead of from RAM. However, you already learned that context switches happen
between user space and kernel space, which as special case includes switching from user space
to kernel space with scheduling of a di�erent thread. In all those cases, the new execution
context needs data and instructions that di�er from the currently cached ones. Thus, context
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switches come with overhead in the form of loading new entries from RAM into caches. When
returning to the old context, previously cached entries may have been replaced, which is also
called cache pollution and again requires slow accesses to RAM.

Furthermore, CPUs may support special instructions and execution modes to isolate kernel
space from user space and user spaces from each other, for which basics are explained on
the next slide. Besides, CPUs may come with special instructions to enter so called idle

states, which can be executed by the OS to save power when no thread wants to execute any
instruction. The link on this slide leads to details for Linux.

Importantly, CPUs have additional input pins or buses on which devices can trigger so-
called interrupts to signal events that should be processed by the OS. Such interrupt processing
is the topic of this presentation.

2.4 Privilege Levels/Rings/Modes

� Hierarchical protection domains of CPUs

� At least kernel mode vs. user mode (see Sec. 7.3.1 of [Hai19])

* E.g., 4 rings since Intel 80286

· Typically, ring 0 is kernel mode (most privileged), ring 3 is
user mode (least privileged)

* Governed by bit pattern in special register

� Instruction set restricted depending on mode/privilege level

� Special registers protected

� I/O, memory management protected

� OS starts in kernel mode

� Applications run in user mode

� Interrupts (system calls, traps, . . . ) lead into kernel mode

Modern processors support protection domains which means that pieces of code can ac-
tually be executed at di�erent privilege levels. For our purposes, it would be su�cient to
consider just two privilege levels, the so-called kernel mode which has full access to the under-
lying hardware and the user mode which is restricted and which is the mode in which ordinary
application are run. So for example early Intel processors already supported 4 rings, where
ring 0 was the kernel mode, the most privileged mode, while ring 3 is the one at which user
applications run. A bit pattern in a special register controls in which mode the processor is
currently operating.

The key idea of protection domains is to restrict the instruction set which the CPU is
currently able to execute. And that restriction depends on the mode or privilege level within
the CPU is currently executing. So what instructions to allow or forbid? If you think about
it, because the current mode is recorded in a special register, that register of course needs to
be protected because otherwise any code running in user mode could just access that register
and elevate its own privilege level. So certain special registers are protected. In addition,
input-output operations and memory management operations are also protected depending
on the current privilege level.

The big picture for the use of di�erent protection domains is as follows. The operating
system starts in kernel mode with the highest privilege level, so it is allowed to do whatever it
wants to do and has full access over the underlying hardware. At some point in time it starts
the �rst user application and it starts that application in user mode. So the user application
is restricted in terms of the instructions that can be executed and if it wants to perform input-
output operations, for example, then it needs to perform a system call so that the operating
system can perform that operation in its kernel mode on behalf of the user operation. In
particular, system calls somehow need to switch the CPU from user mode into kernel mode.
Similarly interrupts also need to lead into kernel mode and I'll have more to say about that
in the following. As a side remark, I'd like to mention that I'm simplifying here. In particular
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CPUs with virtualisation support may also have something like a privilege level -1. The idea
there would be that guest operating systems are actually running in a kernel mode but still
do not have full control over the hardware, which is reserved to some supervisor component
which runs at privilege level -1.

2.5 Big Picture

� I/O devices are components that interact with the OS

� Some receive requests and deliver results

* E.g., disk, printer, network card

� Some generate events on their own

* E.g., timer/clock, keyboard, network card

� Alternative types of I/O

1. OS polls (continuously asks) for events/results

2. Device triggers interrupt when event occurs or result is ready

� (Historically, special CPU input pins/bits were used to signal
interrupts; now, also existing buses are used, e.g., MSI)

� CPU interrupts current computation and jumps into OS, which
handles interrupt

2.5.1 Types of I/O

� With polling, I/O is called synchronous

� OS monitors I/O operation for completion

� With interrupts, I/O is called asynchronous

� OS initiates I/O

� I/O proceeds asynchronously, CPU free to perform other tasks

� Device triggers interrupt when I/O operation completed

* CPU interrupted, I/O result handled by OS

3 Polling

3.1 I/O with Polling

I/O happens synchronously while OS polls for result
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Figure 3: I/O with Polling

Let's see how I/O works with polling. The key characteristic here is that while an I/O
operation is ongoing, the CPU does nothing else but synchronously check whether the opera-
tion has successfully completed already. So, the key ingredients here are an application that
would like to perform some I/O operation, then the operating system which needs to perform
the I/O operation on behalf of the application. Recall that the application is run in user mode
while the operating system runs in Kernel mode and is thus responsible for I/O operations.
And, of course, there is the I/O device, for example a keyboard.

After some normal processing the application invokes a system call to have the operating
system perform that I/O operation. So, the operating system will start that operation on
behalf of the application at the device.

While the I/O operation proceeds, the operating system continuously monitors its progress
and waits for the result.

At some point in time the I/O operation �nishes, the operating system obtains the result,
and transfers it to the application, which can then continue.

3.2 Polling Observations

� Advantages

� Simple

� Fast

* Result processed as soon as it is available

· No overhead (compared to interrupts as presented subse-
quently)

� Disadvantage

� Busy waiting = waiting on CPU for event to occur

* CPU time wasted if I/O is slow or infrequent

* Bad idea if wait period is �long�

The question is, how good is polling as an I/O processing technique? It turns out that
this question is a hard one, and the entire presentation deals with that question. Let's take a
look at advantages and disadvantages of polling.

The major advantage of polling is that it is simple to program. Think of a thread that
would like to perform an I/O operation, for example reading a �le from disk. Quite likely the
thread invokes the I/O operation because it needs the �le contents to proceed in a reasonable
manner. So the simplest thing to do is to issue that I/O request and then just �to poll,� i.e.,
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to check continuously whether the data has arrived already and not to do anything else. This
is certainly a simple approach.

However, waiting for something that is happening externally looks like a waste of CPU
time: The CPU could theoretically do something useful but all that it does is wait for I/O to
happen.

An alternative would be to program the thread in such a way that it can do something
else while disk data is being transferred. Apparently, that would make the program much
more complex. Also, polling is faster than this alternative. If a thread actively waits for data
from disk, then it can respond to that data as soon as it is available, no overheard involved
at all. This point will become much clearer once we've taken a look at the overhead involved
in interrupt processing.

Polling is a special instance of a technique called busy waiting. Busy waiting is also
discussed in the book by Hailperin in the context of scheduling, which is the topic of a
subsequent presentation.

3.2.1 Polling Example: Hack Keyboard

� Program waits for user to press key

� Loop, repeatedly reading keyboard memory location until key pressed

� Recall Fill.asm

� CPU executes instructions all the time

� Even if Hack had OS with multitasking, nothing else could be executed

� CPU time in loop is wasted

4 Interrupts

4.1 Fundamental Idea

� Interrupt: Signal to CPU

� Generated externally to CPU (signal on bus or separate pin)

* CPU stops doing whatever it did

* CPU jumps (resets program counter) to interrupt handler in-
stead (details on following slides)

� If I/O devices generate interrupts, CPU does not need to wait for I/O
completion

� OS initiates I/O operation at device

* CPU is free to do something else asynchronously during I/O
execution

� At later point, I/O operation completes and device triggers an
interrupt

* OS interrupt handler acts accordingly

Interrupts are similar to function calls in the sense that if a function gets called then
code elsewhere in memory gets executed. Similarly, when an interrupt gets triggered, the
CPU will stop doing whatever it did so far and instead it will jump to an interrupt handler
which is provided by the operating system. The major bene�t of introducing interrupts is
that the operating system no longer needs to actively wait for the completion of potentially
long-running I/O operations but instead just needs to initiate I/O operations and then is free
to do something else asynchronously, while the I/O operation is ongoing. And if at some later
point in time the I/O operation completes, the device triggers or raises an interrupt and the
operating system's interrupt handler will act accordingly.
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4.2 I/O with Interrupts � Overview

� Asynchronous processing of I/O

� External noti�cations via interrupts

Figure 4: I/O with Interrupts

This slide shows the big picture of I/O processing using interrupts. I really recommend
that you contrast this slide with the earlier one shown for I/O processing with polling. So
similarly to the polling case, we will be looking at the application, the operating system, and
the i/o device. In addition now, we will also take a look at the interrupt handler, which is the
speci�c part of the operating system that is responsible for handling interrupts.

Exactly as in the case of polling an application �rst may perform arbitrary instructions
and then at some point in time invoke the system call to perform an I/O operation. So again,
the operating system needs to do that. So again, the operating system is responsible for
starting the I/O operation on behalf of the application.

This time however, the operating system only initiates the I/O operation and is then free
to do something else while the IO operation proceeds asynchronously.

So after the operating system has performed all housekeeping and management operations
that it needs to perform, an application can continue running. Actually whether the previously
running application or a di�erent application is going to continue depends on the type I/O
and we'll take a look at that separately.

When the I/O operation is �nished, the corresponding device triggers an interrupt and
that interrupt then leads to execution of the interrupt handler of the operating system, which
takes care of necessary management operations.

Finally the operating system allows some application to continue.

4.2.1 Hypothetical Interrupt Example: Hack Keyboard (1/3)

� Suppose Hack had multitasking OS with threads and interrupts (which it
does not)

� Multiple programs could run concurrently in separate threads

� Again, wait for user to press key

� This time, thread invokes (blocking) system call, asking OS for next
pressed key

* (Non-blocking system calls exist as well, discussed later)

� OS remembers to inform that thread about keyboard input, blocks
it
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* OS takes that thread aside

* OS dispatches di�erent thread to execute on CPU

4.2.2 Hypothetical Interrupt Example: Hack Keyboard (2/3)

� Eventually, key gets pressed

� Keyboard triggers interrupt

* CPU interrupts whatever it does, jumps to interrupt handler,
which interacts with hardware to obtain value representing key

* OS records that value as return value of system call

· OS unblocks blocked thread

� Scheduling decision by OS determines what (unblocked) thread to
continue next

* At some point in time, maybe right now, OS chooses thread that
invoked the keyboard system call

· Thread continues with return value from system call

4.2.3 Hypothetical Interrupt Example: Hack Keyboard (3/3)

� Notice: Latency (delay) between system call and processing of its return
value

� Latency between system call and key press

* Cannot be avoided

* In contrast to polling, with interrupts something useful can hap-
pen on the CPU during this period

� Between key press (interrupt) and return of key's value into thread

* Processing of interrupt with overhead

· Discussed subsequently

* Resulting delay does not exist for polling

4.3 Dijkstra on Interrupts

� �It was a great invention, but also a Box of Pandora. Because the exact
moments of the interrupts were unpredictable and outside our control, the
interrupt mechanism turned the computer into a nondeterministic machine
with a nonreproducible behavior, and could we control such a beast?�

� �When Loopstra and Scholten suggested this feature for the X1, our next
machine, I got visions of my program causing irreproducible errors and I
panicked.�

In retrospect, adding interrupts to computers may sound simple to you given that they
are around everywhere, essentially, but this slide shows two quotes by Dijkstra on what he
thought when interrupts were about to be added to computers and that tells you that we
really need to be careful. If you're interrupted at some point in time, then of course the
question is, how can you make sure that whatever you did while you were interrupted, can
be resumed later on, once the interrupt has been properly treated? For example, if right now
an interrupt occurs raised by your mobile phone because some alert from some social message
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or whatever occurs, then it's not really clear that you will be able afterwards to continue
the thought, which was interrupted by your phone. Therefore, I suggest that, while you are
working your way through these slides, you switch o� your mobile phone or at least you place
it somewhere, where its interrupts cannot distract you. Actually also CPUs have got a feature
to turn o� interrupts, which may be used by the operating system to make sure that it does
not get interrupted, when it doesn't want to.

4.4 Interrupts, Traps, Faults, Exceptions

� Interruption of ordinary CPU execution

� Hardware-speci�c, terminology not uni�ed

� Classi�cation

� Asynchronous, triggered externally

* Hardware interrupt (e.g., key pressed, data received)

· Timer (clocks); basic mechanism in scheduling presentation

� Synchronous, triggered internally

* Software interrupt

· Before execution of instruction, e.g., page fault as basic
mechanism in virtual memory presentation)

· After execution of instruction (e.g., over�ow)

Here, you see various terms related to interrupts. Interrupts, traps, faults, exceptions.
Which is which is not really well de�ned and varies from textbook to textbook and processor
to processor. In all cases we are talking about interruption of the ordinary CPU execution.
An accepted classi�cation of those interruptions is into the classes of asynchronous and syn-
chronous interruptions. Note that asynchronous and synchronous are meant in their literal
meaning here and they are not directly related to synchronous and asynchronous I/O process-
ing discussed previously. Asynchronous interruptions are those that are triggered externally
to the CPU, for example hardware interrupts that I talked about earlier; so, if a key is pressed
or if a disk has transferred a block of memory. But also timers can raise interrupts. So we can
have interrupts that are triggered periodically and that will be important for scheduling pur-
poses later on. In contrast, synchronous interruptions are those that are triggered internally
to the CPU, one example are software interrupts that we'll take a closer look at in a minute
and also interruptions that occur either before or after the execution of instructions. So, page
faults will become important in the context of virtual memory management later on, while
interruptions after instructions will not be important for our purposes.

4.5 Interrupts and CPUs

� OS speci�es a handler for each type of interrupt and exception

� Handler = function

� Type of interrupt determined by number

� E.g., x86 processors

� Addresses of handlers stored by OS in in-memory table, the Inter-
rupt Descriptor Table (IDT) (synonym: Interrupt Vector (Table))

* Each table entry points to one handler/function

� CPU (each core) contains an Interrupt Descriptor Table Regis-
ter (IDTR)
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* OS initializes IDTR with start address of IDT

With this and the subsequent slide I am going to explain in a little bit more detail,
how interrupts on our PC-CPUs are really processed. From previous explanations, it should
already be clear that there are di�erent types of interrupts and exceptions, for example timer
interrupts, interrupts when keys are pressed, and also page faults. And now the operating
system speci�es a handler for each type of interrupt. You should think of such a handler just
like a function, and the type of the interrupt is identi�ed by some number. Now the operating
system stores addresses of all these functions, all these handlers, in an in-memory table, which
is called interrupt descriptor table. Sometimes you also see the term interrupt vector table for
that purpose. So, the idea is: this table contains an entry for each handler that tells where
that handler resides in main memory. In addition, the CPU has a speci�c register that keeps
the start address of that interrupt descriptor table, the IDTR. So the operating system, which
has created the interrupt descriptor table in the �rst place, places the start address of that
table into the IDTR.

4.6 Interrupt Handling

� Upon interrupt of type n:

� A context switch takes place, and (in kernel mode) the CPU

* saves state of current execution,

* uses IDTR to access IDT,

* looks up entry n in IDT, and invokes corresponding handler/function.

* Afterwards, state is restored, previous execution continued.

� Context switch comes with overhead

� Save/restore state

� Cache pollution

* Cache contents unlikely to be useful in new context

· (In particular, this a�ects the so-called TLB, to be discussed
in virtual memory presentation)

� Maybe scheduling (later presentation)

* With setup of new address space (virtual memory presentation)

Whenever an interrupt occurs, a so-called context switch takes place. So that means the
CPU gets interrupted in whatever it is currently doing. To resume that interrupted execution,
it needs to save the state of the current execution and then it uses the IDTR to �gure out
where the start address of the interrupt descriptor table is. Based on the type of interrupt that
has just occurred it looks at the corresponding entry in the interrupt descriptor table, �gures
out the start address for that handler, and jumps to that location. And then the interrupt
gets handled by the corresponding function. Once that has �nished the CPU can restore the
saved state and resume the previously interrupted execution. Note that such a context switch
always comes with some overhead. So for example the CPU needs to save and restore the
state; depending on what exactly happens in the course of interrupt handling, it may also be
necessary to set up separate address spaces. Then continue execution of instructions elsewhere
always leads to so-called cache pollution. So entries that were previously useful in the CPU
cache are no longer useful in the context of the interrupt handler, and therefore they may be
evicted from the cache and replaced by an interrupt handling speci�c data and instructions,
so that when later on the real the original functionality resumes its data and instructions
will no longer be present in the cache. Similar e�ects happen for the so-called Translation
Lookaside Bu�er which deals with virtual address translation, which will come back in a later
lecture. And maybe there will be scheduling involved to �gure out what to do next. So, all
these things may lead to overhead and may actually slow down the system.
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4.7 Aside: Interrupts for System Calls

� Recall: System calls = API provided by OS kernel

� Implementation is OS and hardware speci�c

� Hardware speci�c methods to enter kernel mode

� int 0x80 (generic), SYSCALL (AMD), SYSENTER (Intel)

� Beyond class: Linux, Intel IA-32, int 0x80

� Software interrupt via int 0x80 leads into kernel mode

� IDTR contains address of IDT

* Entry 0x80 points to handler function

· In the past system_call, since 2015 entry_INT80_32

* Initialization during boot (arch/x86/kernel/traps.c)

A previous slide contained the term software interrupt as an example for a synchronous
interruption of the CPU. Now let's take a look at how this kind of interrupt can actually be
used to implement system calls. Recall that system calls are the API, the application pro-
gramming interface provided by the OS kernel. The question is how could a system call be
implemented? Remember that the OS is supposed to run in kernel mode while user applica-
tions that invoke system calls run in the CPU's user mode. Essentially, the OS needs to use
some mechanism which switches the CPU from user mode to kernel mode, and depending on
the CPU architecture there are di�erent hardware speci�c methods, namely di�erent machine
instructions, to enter the kernel mode. The slide names a couple of those. For example, on
a 32-bit Intel processor the instruction int 0x80 triggers a software interrupt, which switches
the CPU into kernel mode, where the IDTR is used to lookup the start address of the IDT
as explained previously. The IDT in turn is then used to lookup the start address of the
speci�c function or handler to execute. In the case of Linux, that function was simply called
systemcall in the past, but naming changed in 2015, and you can read more about that change
at the URL linked here. Also, you can take a look at the source code �le traps.c linked here
to see all the details of initialization.

4.8 Self-Study Quiz

This task is available for self-study in Learnweb.

� Consider a networked machine that receives incoming messages. Each of
those messages requires about 4 µs CPU time for processing. If inter-
rupts are used, each interrupt introduces a delay of about 6 µs (caused by
di�erent types of overhead).

� How many messages can be processed per second with polling, how
many with interrupts?

� How much time is wasted (waiting for messages to arrive) with polling
in the worst case? How much spent on overhead processing with
interrupts?

5 Interrupts and I/O Communication

5.1 Recall: I/O with Interrupts

� Asynchronous processing of I/O
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� External noti�cations via interrupts

Figure 5: I/O with Interrupts

5.2 Blocking vs Non-Blocking I/O

� Previous slide left open which application continues after I/O system call

� OS provides blocking and non-blocking system calls

� Blocking system call

� Application has to wait (is blocked) until I/O completed

� However, a di�erent application may continue

* Scheduling, context switch, overhead

� Non-blocking system call

� OS initiates I/O and returns incomplete result to application

� Application continues (and is informed of or needs to check for I/O
completion at later point in time)

� (Notice: This is impossible with polling)

The previous slide showed that after the operating system has initiated an I/O operations -
so after it has �nished the system call - some application may continue to run asynchronously
to the I/O operation. However, the previous slide left open whether the same application
that did the system call will continue after the system call or whether maybe the operating
system switches to some other application. So, let's now take a look at this question. It turns
out that the operating system provides di�erent types of system calls, in particular blocking
and nonblocking system calls. If an application invokes a blocking system call, then it has
to wait until the corresponding I/O operation is completed. So the operating system blocks
that application. In that case the invoking application cannot reasonably continue. However,
a di�erent application may continue and that means that the operating system needs to do
or perform a scheduling decision and switch to that separate application, which involves a
context switch with additional overhead. The alternative is that an application invokes a
non-blocking system call; in that case, the operating system initiates the I/O operation and
immediately returns an incomplete result to the calling application. Now it is the application's
responsibility to �gure out if and when the I/O operation has actually been completed. As
explained before, when the I/O operation is completed an interrupt will be triggered, that
leads to the execution of the corresponding handler and then the operating system will change
the incomplete result that was passed to the application and mark that the I/O operation has
actually been performed and maybe also return necessary result data to the application. Also
it should be clear that if polling is used for I/O processing, I/O can only be blocking.
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6 I/O Processing

6.1 Latency Example (1/2)

� Goal: Explain interrupt overhead as serious challenge if interrupts are
frequent

� See [Lar+09]

� Two PCs with Intel Xeon processors (2.13 GHz)

� 1 Gbps Ethernet networking cards connected via PCIe

� 1 � 2 frames may arrive per 1 µs (1 µs = one millionth second)

* For the curious

· Ethernet's unit of transfer: frame with minimum size of 512
b

· At 1 Gbps, 1000 b need 1 µs for transfer, plus propagation
and queueing delays

· Thus, 1 � 2 frames may arrive per 1 µs

� Interrupt per frame arrival!?

* What about 10 Gbps networking?

So far, we've seen two di�erent kinds of I/O processing: polling on the one hand and
using interrupts on the other hand. So the question is: Which is actually better? If you
think about it, polling seems to come with unnecessary CPU wait time. So waiting for slow
I/O like networking seems just like a waste of CPU resources. However, I also said that
interrupt processing comes with context switches and overhead. The question is, how large
is that overhead? Here is an example from the literature. This is about interrupt driven
network processing. Two PCs are connected via gigabit ethernet networking. This slide here
shows some characteristics of gigabit ethernet. So you see minimum frame sizes and given
the transfer speed of one gigabit per second, we can expect that in the worst case one or two
frames may arrive every microsecond. The question is: How long does it actually take to
process those frames if one or two are arriving per microsecond? Will that work? And if you
think about even faster networks like 10 gigabit networking then of course frames will arrive
at a much higher rate.

6.2 Latency Example (2/2)

� Numbers from [Lar+09]

� Processing of single frame takes total of 7.7 µs

� Latency breakdown according to di�erent sources

* Hardware: ≈ 0.6 µs

* Interrupt processing: > 3 µs

* Processing of data: > 3 µs

� If one or two frames arrive per 1 µs and each frame needs 7.7 µs processing
time, something is seriously wrong

� Network data will be dropped because it arrives too fast

* The system could even crash

� Interrupt per arrival does not work
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The paper cited here shows that each network frame needs a processing time of 7.7 mi-
croseconds. That total of 7.7 microseconds is broken down in great detail in the paper, which
you can check out yourself.

Obviously, when frames arrive at high speed, up to the maximum of 1 or 2 frames per
microsecond, this timing is asking for disaster. Raising an interrupt for every packet arrival
on a gigabit network is bound to overload or even crash the machine if the network load is
high.

Let's say every day you're supposed to write an exam but you need 7.7 days to prepare
for each exam. Apparently, you should not expect to �nish preparations for any exam.

6.3 Interrupt Livelocks

� Livelock: Situation in which computations take place but (almost) no
progress is made

� Computation time is mostly wasted on overhead

� Interrupt livelock

� Interrupts arrive so fast that they cannot be processed any longer

* Also, not enough CPU time left for other tasks

· Interrupts served with high priority

* Context switching, cache pollution

* Nothing useful happens any more

� Prevent by hybrid of polling and interrupts

* E.g., NAPI

The type of crash that I mentioned on the previous slide has a technical term, namely
Livelock. A Livelock is a situation in which computation still takes place but almost no
progress is made. That means the computations that still take place are mostly related to
overhead processing.

Now, if the Livelock is caused by interrupts, then we're talking about interrupt Livelocks.
The idea is here that interrupts arrive so fast that they cannot be processed any longer. So,
think about individual packets arriving one per microsecond while each individual packet
needs 7.7 microseconds processing time. So, the bulk of CPU time will then be wasted with
interrupt overhead processing and that means also that other tasks are starved. And as
interrupts could be run with high priority, your ordinary tasks will not receive compute time
anymore. In addition, there will be lots of context switching, switching between individual
processes, cache pollution and that also adds to the overhead. And ultimately nothing useful
happens anymore.

A way around this situation is to use a hybrid of polling and interrupts, for example the
NAPI (new API) that is discussed on the subsequent slide.

6.3.1 Starvation

� Interrupt livelock is special case of starvation

� Starvation = continued denial/lack of resource

� Under interrupt livelock, threads do not receive resource CPU (in
su�cient quantities for progress) as long as �too many� interrupts
are triggered

� Starvation revisiting in later presentations on scheduling and challenges
for mutual exclusion
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6.4 NAPI

� Linux �New API� for networking (2001), see [SOK01]

� Hybrid scheme

� Use interrupts under low load

* Utilize CPUs better

· Avoid polling for devices without data

� Switch to polling under high load

* Avoid I/O overhead

· Data will be available anyways

NAPI or new API is the name of a technique of the Linux kernel which was introduced
in 2001. So actually you see that it's not a good idea to name something �new- something�.
Anyways it is a hybrid scheme that combines polling and interrupt processing to make most
use of the available resources. The drawback of polling was that we are wasting CPU cycles if
we are polling for something and that something is not ready yet. In contrast, under NAPI,
interrupts are used under low load. So if only few packets arrive, then each of these packets will
trigger an interrupt and that avoids polling in situations where no data is available. However,
if lots of network packets arrive, then the system switches to polling to avoid the I/O overhead
that we just discussed. And the assumption there is, that under high load, new data will be
available anyways, so whenever the operating system looks for new data, it will be there.

7 Outlook

7.1 When to Poll?

Figure 6: Measurements for DRAM-based storage prototype (data from
[YMH12])

This �gure shows data from research paper [YMH12] dating back to 2012 when non-volatile
memory devices gained traction as alternative to slow disks. Some details for such devices
are mentioned on the next slide. Essentially, these devices deliver data so fast, both with low
latency and high bandwidth, that polling is more e�cient than interrupt-driven processing.
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For such devices, the two bars to the left show interrupt-driven processing times, while
the two bars to the right show times for polling. Note that the total time for polling is smaller
than the OS overhead for interrupts alone.

Thus, while interrupts are useful for high-latency I/O devices such as hard disks, polling
is preferable for low-latency I/O devices.

7.2 I/O Processing � Then and Now

� Then: Disks are slow

� Mechanical devices

� Delivered data is processed immediately by CPU

� Latency before data arrives → Interrupts bene�cial

� Now: Nonvolatile memory/SCMs are fast, see [Nan+16]

� Mechanics eliminated

� Operation at network/bus speed (PCIe)

� Data can be delivered faster than processed → Polling bene�cial

� Need to rethink previous techniques

* Balancing, scheduling, scaling, tiering

7.3 Call for Research

� [Bar+17]: Attack of the Killer Microseconds

� Nanosecond latency (DRAM access when data not in CPU cache) is
hidden by CPU hardware

* Out-of-order execution, branch prediction, multithreading (two
threads per core)

* (However, also ongoing research to address Killer Nanoseconds
[Jon+18])

� Millisecond latency (disk I/O) is hidden by OS

* Multitasking

� What about microseconds of new generation of fast I/O devices?

* E.g., Gbps networking, �ash memory

* Paper describes datacenter challenges experienced at Google

8 Conclusions

8.1 Summary

� Interrupt handling is major OS task

� System call implementation

� I/O processing

� Timers, to be revisited for scheduling

� Polling vs interrupt-driven I/O

� E�ciency trade-o�

� Interrupt livelocks
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