
How to create your own root CA for Solid *

Jens Lechtenbörger

VM Neuland im Internet 2021

This text explains how to create and use a certi�cate authority (CA) with
self-signed root certi�cate for use on a local Solid server with domain names
that end in solid.localhost. Certi�cates are created with OpenSSL, which
is free software. The following is known to work under GNU/Linux and with
Docker.

Note! The following installs a new root certi�cate, which should only be
done on test systems. With such settings, one can create valid certi�cates for
any domain.

As explained in Solid's readme a multi-user installation requires the use of
wildcard certi�cates (as a new hostname is created for each user). A wildcard
certi�cate is a certi�cate for a domain name such as *.example.org and is ac-
ceptable for all servers under the domain example.org (e.g., www.example.org,
mail.example.org).

Initially, I tried to use domain names such as alice.localhost and
bob.localhost with a wildcard certi�cate for *.localhost. This did not work
as localhost is a top-level domain, for which wildcard certi�cates are not ac-
cepted by browsers (without clear error message). Thus, I decided to go for
solid.localhost as domain name for use with Solid on my machine.

1 Create CA with OpenSSL

The openssl program can use default values from a con�guration �le to reduce
typing e�orts. Mine are available in this directory, which also contains the
�les (keys, certi�cates, . . .) created during the following steps. Copy the �les
openssl.cnf and openssl-wildcard.cnf to some directory in which you want
to create your CA and its certi�cates.

1. Files for the CA will be located in the new sub-directory CA.

mkdir CA

2. Create certi�cate authority.

� Create directory structure and necessary �les ("unique_subject =

no" in index.attr allows to create multiple certi�cates per name;
the initial serial number is arbitrary).

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://github.com/solid/node-solid-server
../DNS.org
https://www.openssl.org/
https://www.getgnulinux.org/en/switch_to_linux/
../Docker.org
https://github.com/solid/node-solid-server#run-multi-user-server-intermediate
https://gitlab.com/oer/oer-courses/vm-neuland/tree/master/certs
https://oer.gitlab.io/oer-courses/vm-neuland/texts-en/create-root-CA.html
https://gitlab.com/oer/oer-courses/vm-neuland
https://gitlab.com/oer/oer-courses/vm-neuland

cd CA; mkdir certs crl newcerts private; touch index.txt; echo "unique_subject = no" > index.attr; echo 314159 > serial

� Invoke openssl to create self-signed root certi�cate. (When asked,
use and write down a short pass phrase; remember that all this is only
for testing. Hit return to accept default values from con�guration �le.
Note the output options passed to openssl.)

openssl req -config ../openssl.cnf -new -x509 -days 3650 -newkey rsa:4096 -sha256 -extensions v3_ca -out certs/my_cacert.crt -keyout private/my_key.crt

� A real CA would publish its self-signed certi�cate and have it embed-
ded in operating systems and browsers by default. Do this manually:

� Make new root certi�cate known to operating system (after-
wards, you can �nd the new certi�cate under /etc/ssl/certs/
and in /etc/ssl/certs/ca-certificates.crt)

sudo cp certs/my_cacert.crt /usr/local/share/ca-certificates/

sudo update-ca-certificates

* Note that some software uses that certi�cate store, while
other does not. Browsers usually come with their own cer-
ti�cate store (see next step). For node.js you may need to
point to the certi�cate in an environment variable, as is done
in entrypoints.sh for a Solid server with Docker.

� Import new root certi�cate into browser (e.g., with Firefox: Pref-
erences� Privacy & Security� Certi�cates� View Certi�cates
� Authorities � Import). You may want to use a separate
browser pro�le for such experiments.

3. Create server key pair and certi�cate signing request (CSR). Such com-
mands would really be executed by the organization owning the server,
not by the CA; the resulting request (containing the public key) is then
turned into a signed certi�cate by the CA in the next step; the CA must
never learn the private key.

Here, the con�g �le openssl-wildcard.cnf is used, which contains a sec-
tion subjectAltName = @alt_names with hard-coded names to generate
a wildcard certi�cate for *.solid.localhost. When asked, the challenge
password can be empty.

cd ..

openssl genrsa -out solid_key.crt 4096

openssl req -config openssl-wildcard.cnf -sha256 -new -key solid_key.crt -out solid_csr.crt

4. Sign CSR, again with wildcard information. Our new CA does this. Use
the pass phrase written down in step 2.

openssl ca -config openssl-wildcard.cnf -extensions v3_req -notext -md sha256 -in solid_csr.crt -out solid.crt

5. Create certi�cate chain. The organization owning the server would do
this. The server needs to be told where to �nd it (and the corresponding
private key).

cat solid.crt CA/certs/my_cacert.crt > solid.chain.crt

2

https://nodejs.org/api/cli.html#cli_node_extra_ca_certs_file
https://gitlab.com/oer/cs/docker-solid/blob/master/entrypoint.sh
https://gitlab.com/oer/cs/docker-solid

For Solid with Docker below, copy the CA certi�cate to the current direc-
tory:

cp CA/certs/my_cacert.crt .

2 Use CA with Solid (manual approach)

Use key and certi�cate when initializing your Solid server.
Make sure that host names under solid.localhost are resolved to your

local machine. The IPv4 address of localhost is 127.0.0.1. Add additional
lines like this to /etc/hosts:

127.0.0.1 *.localhost

127.0.0.1 *.solid.localhost

Some operating systems seem to ignore such wildcard entries in the hosts

�le, others accept them. Try ping solid.localhost with the above settings.
If that works, everything is �ne. If not, either add entries with full names such
as the following ones, or install dnsmasq (as in the Docker image mentioned in
the next section).

127.0.0.1 solid.localhost

127.0.0.1 alice.solid.localhost

127.0.0.1 bob.solid.localhost

127.0.0.1 <more names as necessary>

3 Use CA with Solid in Docker

The above setup is bundled in this Docker image for the node Solid server.
Run as follows (maybe replace $PWD with a directory of your choice, where

you want to collect Solid data):

docker run -it --cap-add=NET_ADMIN --dns=127.0.0.1 -p 8443:8443 --name my-solid -v $PWD:/opt/solid registry.gitlab.com/oer/cs/docker-solid/docker-solid

Finally, explore your own POD: https://solid.localhost:8443

4 Clean up

If you imported the above CA certi�cate into your browser, make sure to delete
it at the end of your experiments. View certi�cates (as for import above), scroll
down to �University of Muenster�, delete �Solid operator�.

License Information

This document is part of a larger course. Source code and source �les are
available on GitLab under free licenses.

Except where otherwise noted, the work �How to create your own root CA
for Solid�, © 2019, 2021 Jens Lechtenbörger, is published under the Creative
Commons license CC BY-SA 4.0.

3

https://github.com/solid/node-solid-server#run-multi-user-server-intermediate
https://gitlab.com/oer/cs/docker-solid
https://solid.localhost:8443
https://gitlab.com/oer/oer-courses/vm-neuland
https://gitlab.com/oer/oer-courses/vm-neuland
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Create CA with OpenSSL
	Use CA with Solid (manual approach)
	Use CA with Solid in Docker
	Clean up

