
The Web
*

Jens Lechtenbörger

VM Neuland im Internet 2021

Contents

1 Introduction 1

2 Web 2

3 HTTP 4

4 Conclusions 8

1 Introduction

1.1 Learning Objectives

� Explain message format and GET requests of HTTP as application protocol

� Perform simple HTTP requests via telnet or gnutls-cli

1.1.1 Recall: Internet Architecture

� �Hourglass design�

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://oer.gitlab.io/oer-courses/vm-neuland/Web.html
https://gitlab.com/oer/oer-courses/vm-neuland
https://gitlab.com/oer/oer-courses/vm-neuland


Figure 1: Internet Architecture with narrow waist

� IP is focal point

� �Narrow waist�

� Application independent!

* Everything over IP

� Network independent!

* IP over everything

� Now: HTTP at application layer

1.2 Today's Core Question

� What does your browser do when you enter a URI in the address bar?

2 Web

2.1 History of the Web (1/2)

� 1945, Vannevar Bush: As we may think

� Memex for information storage

� Associative indexing (Hyperlinks)

� 1989, article by Tim Berners-Lee

2

https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.w3.org/History/1989/proposal.html


� Distributed hypertext system, ��web� of notes with links�

� Initially for cooperation among physicists at CERN

� May 1991

� Distributed information system based on HTML, HTTP, and client
software at CERN

� August 1991

� Availability of CERN �les announced in alt.hypertext

2.2 History of the Web (2/2)

� 1992, NCSA Web Server available

� National Center for Supercomputing Applications, University of Illi-
nois, Urbana-Champaigne

� 1993, Mosaic browser created at NCSA

� 1994, World Wide Web Consortium (W3C) founded by Tim Berners-Lee

� Publication of technical reports and �recommendations�

� Now

� Web 2.0, Semantic Web, cloud computing, browser as access device

2.3 WWW/Web

� Standards

� W3C (HTML 4 Speci�cation)

* �The World Wide Web (Web) is a network of information re-
sources.�

� HTTP/1.1 Speci�cation (RFC 7230)

* �The Hypertext Transfer Protocol (HTTP) is a stateless application-
level protocol for distributed, collaborative, hypertext informa-
tion systems.�

� Distributed information system

� Client-Server architecture

* Web clients (browsers) and servers exchange HTTP messages
based on Internet standards

� Sample Web standards (application layer of Internet architecture)

* URIs (Uniform Resource Identi�ers, generalize URLs and URNs)

* HTTP (now)

* ((X)HTML)

3

https://www.w3.org/People/Berners-Lee/1991/08/art-6484.txt
alt.hypertext
https://www.w3.org/
https://www.w3.org/TR/html4/intro/intro.html
https://tools.ietf.org/html/rfc7230
https://oer.gitlab.io/oer-courses/cacs/Internet.html
https://oer.gitlab.io/oer-courses/vm-neuland/URIs.html
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/Uniform_Resource_Name


3 HTTP

3.1 HTTP

� Hypertext Transfer Protocol

� HTTP/1.1, RFC 7230

* Plain text messages, discussed subsequently

� HTTP/2, RFC 7540

* Adds frame format with compression

* Adoption increasing, from 15% in July 2017 to 28% in July 2018,
to 33.4% in July 2019, to 50% in January 2021

� HTTP/3 also upcoming

� Request/response protocol

� Speci�c message format

� Several access methods

� Requires reliable transport protocol

* Typically TCP/IP, port 80 (or port 443 for HTTPS)

3.2 Excursion: Manual Connections

� HTTP (before HTTP/2) and SMTP are plain text protocols

� With encrypted variants HTTPS and SMTPS (or STARTTLS)

� Enables experiments on the command line

� Type (or copy&paste) request, see server response

� For unencrypted connections, telnet can be used (preinstalled or
available for lots of OSs)

� For encrypted connections, gnutls-cli can be used (part of GnuTLS,
which is free software)

* TLS = Transport Layer Security

· Successor to SSL

· Layer between application layer and TCP, recall Internet ar-
chitecture

· Secure channels based on asymmetric cryptography

3.2.1 Warnings

� Next two slides demonstrate how to type HTTP commands (for an im-
proved understanding of the protocol)

� Subsequent examples with www.informationelle-selbstbestimmung-im-internet.de
require GnuTLS

* Server redirects from port 80 to port 443

4

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7540
https://w3techs.com/technologies/details/ce-http2
https://en.wikipedia.org/wiki/HTTP/3
https://w3techs.com/technologies/details/ce-http3
https://oer.gitlab.io/oer-courses/cacs/Internet.html#slide-ip-udp-tcp
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/SMTPS
https://en.wikipedia.org/wiki/STARTTLS
https://www.gnutls.org/
https://oer.gitlab.io/OS/Operating-Systems-Motivation.html#slide-free-software
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://oer.gitlab.io/oer-courses/cacs/Internet.html#slide-internet-architecture
https://oer.gitlab.io/oer-courses/cacs/Internet.html#slide-internet-architecture
https://oer.gitlab.io/OS/Operating-Systems-Security.html#slide-asym-intuition


� If your manual typing is too slow, connections may time out (e.g.,
�Peer has closed the GnuTLS connection�)

� Also, use of backspace or cursor keys may destroy connections

� Suggestion: Type in text editor and copy&paste into command line

3.2.2 telnet

� Original telnet purpose: Login to remote host

� Insecure plaintext passwords

� Nowadays, remote login performed with Secure Shell, ssh

� Establish TCP connection to destination port

� telnet www.google.de 80 (port 80 for HTTP)

* (For variants without visual feedback possibly followed by ctrl-+
or ctrl-], set localecho [enter] [enter])

* GET / HTTP/1.1 [enter]

* Host: www.google.de [enter] [enter]

* (Context for above lines soon)

� Beware: Buggy telnet implementations may stop sending after �rst
line (use Wireshark to verify)

Here, you see a sample use of telnet to open a TCP connection to port 80 on a Google
server. You could try out any other number to check on what ports the server is prepared
to talk with you. Port 80 is reserved for HTTP, which is slowly phased out in favor of the
cryptographically secured variant HTTPS on port 443.

Anyways, once a TCP connection is established successfully, you can send data to the
server by typing it. When typing, you need to �speak� the protocol that is expected by the
server, here HTTP, and the lines starting with GET as well as with Host are both part of the
HTTP protocol, which is explained on later slides.

Note that you cannot use telnet with encrypted connections as you would need to type
bytes that setup and use cryptographic protocols then. Thus, while you can open a TCP
connection to port 443 with telnet, it is unlikely that you can use that connection by typing
the necessary bytes for cryptographic protocols afterwards.

For cryptographically secured connections, you may want to use the GnuTLS client as
shown on the next slide.

An aside: On the slide, �ctrl-+� means: Press the ctrl key and + simultaneously. Similarly
for other keys.

3.2.3 gnutls-cli

� Establish TLS protected TCP connection with GnuTLS

� Alternative to telnet on previous slide

� gnutls-cli --crlf www.informationelle-selbstbestimmung-im-internet.de

* (HTTPS on port 443 by default)

* GET /chaosreader.html HTTP/1.1 [enter]

* Host: www.informationelle-selbstbestimmung-im-internet.de

[enter] [enter]

� SMTP for e-mail, port 587 as alternative to 25

5

https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.gnutls.org/
https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html#slide-smtp


* gnutls-cli --crlf --starttls -p 587 secmail.uni-muenster.de

· (Type ehlo localhost, then starttls; press ctrl-d to en-
ter TLS mode; needs authentication)

The cryptographic protocol suite TLS is used in two major variants.

1. A special port, e.g., 443, is reserved for cryptographically secured connections. The
connecting client (here, GnuTLS) must immediately �talk� a cryptographic protocol.

2. A single port, e.g., 25, supports plaintext as well as cryptographically secured connec-
tions. Here, the client starts with plaintext (as with telnet), but can issue a speci�c
command (here, starttls followed by ctrl-d) to switch to a cryptographically secured
connection.

� �ctrl-d� means: Press the ctrl key and d simultaneously.

In any case, application data is transmitted through secure channels.

3.3 Excursion: Browser Tools

� Modern browsers o�er developer tools

� E.g., press ctrl-shift-I with Firefox

� Tools to inspect HTML, CSS, Javascript

� Tools to inspect HTTP tra�c (Network tab)

* Live view on browser requests and server responses

· With details on timing, caching, headers

� Console with error messages

� And much more

3.4 HTTP Messages

� Requests and responses

� Generic message format of RFC 822, 1982 (822�2822�5322)

* Originally for e-mail, extensions for binary data

· Lines end with CRLF, \r\n below

� Messages consist of

* Headers

· In HTTP always a distinguished start-line (request or status)

· Then zero or more headers

* Empty line

* Optional message body

� Sample GET request (does not have a body)

* GET /chaosreader.html HTTP/1.1\r\n

Host: www.informationelle-selbstbestimmung-im-internet.de\r\n

\r\n

� Excerpt of sample HTTP response to previous GET request

6

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322
https://en.wikipedia.org/wiki/Newline


� HTTP/1.1 200 OK\r\n

Date: Wed, 08 Apr 2020 13:30:10 GMT\r\n

Server: Apache\r\n

Last-Modified: Wed, 24 Jul 2019 12:25:46 GMT\r\n

ETag: "2cd1-58e6c6898dce2"\r\n

Content-Length: 11473\r\n

more headers omitted

Content-type: text/html; charset=utf-8\r\n

\r\n

HTML code as body

3.5 HTTP Methods

� Case-sensitive (capital letters)

� GET (Request for resource, see section 4.3.1)

� HEAD (Request information on resource, see section 4.3.2)

� POST (Transfers entity, see section 4.3.3)

* Annotations, postings, forms, database extensions

� PUT (Creates new resource on server, see section 4.3.4)

� DELETE (Deletes resource from server, see section 4.3.5)

� CONNECT (Establish tunnel with proxy, see section 4.3.6)

� OPTIONS (Asks for server capabilities, see section 4.3.7)

� TRACE (Tracing of messages through proxies, see section 4.3.8)

3.6 Conditional GET

� GET under conditions

� Requires (case-insensitive) request header

* (Can be used by browser to check if cached version still fresh)

* If-Modified-Since

* If-Match

* If-None-Match

� Example

� Request

* GET /chaosreader.html HTTP/1.1

Host: www.informationelle-selbstbestimmung-im-internet.de

If-None-Match: "2cd1-58e6c6898dce2"

� Response

* HTTP/1.1 304 Not Modified

Date: Wed, 08 Apr 2020 14:07:31 GMT

additional headers

7

https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7231#section-4.3.2
https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.5
https://tools.ietf.org/html/rfc7231#section-4.3.6
https://tools.ietf.org/html/rfc7231#section-4.3.7
https://tools.ietf.org/html/rfc7231#section-4.3.8
https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html#slide-http-caching


Please revisit the response for an earlier HTTP request. Note that the response contains
a Last-Modified date and an ETag. Both pieces can be used for conditional gets. While the
date is probably self-explanatory, the ETag is some version identi�er provided by the server.
Changed page contents are re�ected in changed ETag values (but not necessarily the other
way round).

On this slide, you see a conditional GET with the ETag value "2cd1-58e6c6898dce2" from
the previous response. As the server's ETag value did not change, it responds with status
code 304, indicating that no modi�cation took place. Hence, a cached result would still be
fresh and usable, saving bandwidth and reducing transmission delays.

3.7 Sample Status Codes

� Three digits, �rst one for class of response

� 1xx: Informational - Request received, continuing process

* 100: Continue - Client may continue with request body

� 2xx: Successful - Request successfully received, understood, and ac-
cepted

* 200: OK

� 3xx: Redirection - Further action necessary to complete request

* 302: Found (temporarily under di�erent URI)

* 303: See Other (redirect to di�erent URI in Location header)

* 304: Not Modi�ed (previous slide)

� 4xx: Client Error - Request with bad syntax or cannot be ful�lled

* 403: Forbidden

* 404: Not Found

� 5xx: Server Error - Server failed for apparently valid request

4 Conclusions

4.1 Summary

� Web browsers and servers talk HTTP

� Simple message format

� More details in CACS

License Information

This document is part of a larger course. Source code and source �les are
available on GitLab under free licenses.

Except where otherwise noted, the work �The Web�, © 2018-2021 Jens
Lechtenbörger, is published under the Creative Commons license CC BY-SA
4.0.

8

https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html
https://gitlab.com/oer/oer-courses/vm-neuland
https://gitlab.com/oer/oer-courses/vm-neuland
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Web
	HTTP
	Conclusions

