Docker Introduction *

Jens Lechtenborger

VM Neuland im Internet 2021

Contents

1 Introduction 1
2 Virtualization 3
3 Containerization 6
4 Docker 8
5 Conclusions 10

1 Introduction

1.1 Motivation (1/2)

e Virtualization software provides virtual hardware

Virtual Machine 1 Virtual Machine 2

Figure 1: Layering with virtualization

— Virtualization implemented by piece of software called Hypervisor/ VMM
* VMM runs on (usual) host OS, translates access to real hardware

— Virtual hardware can have arbitrary features

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

https://oer.gitlab.io/oer-courses/vm-neuland/Docker.html
https://gitlab.com/oer/oer-courses/vm-neuland
https://gitlab.com/oer/oer-courses/vm-neuland

* Largely independent of real hardware, say, ten network cards

— On top of virtual hardware, install operating systems (guests) and
other software to create virtual machines (VMs)
* Share resources of powerful server machine among several VMs
- E.g., your “own” server as VM in a project seminar
x Use VM as blueprint to share reliable environment with others
- Or to fire up lots of identical VMs for compute-intensive
tasks with cloud computing

This and the subsequent slide are intended as quick overview for virtualization and con-
tainerization. Terms used here as well as the layered figure are revisited later on.

1.2 Motivation (2/2)

e Containerization (e.g., with Docker) as lightweight variant of virtualization

Container 1 Container 2 Container 3

App B (with libraries)

Environment 2 based
on kernel of Host OS

Figure 2: Layering with containerization

— No virtual hardware, but shared OS kernel
— Use containers to execute software (versions) in controlled way
x Think of larger application that uses external libraries
* Libraries evolve, may introduce incompatible changes over time
- Specific version of application depends on specific versions of
libraries
- Container bundles “correct” versions

1.3 Learning Objectives
e Explain definitions of virtual machine and virtual machine monitor
e Explain and contrast virtualization and containerization

— Including isolation
— Including layering
e Use Docker for simple tasks

— E.g., start Web/Solid server with static files

— Interpret and modify simple docker files

https://en.wikipedia.org/wiki/Cloud_computing
https://oer.gitlab.io/OS/Operating-Systems-Introduction.html#slide-kernel-variants

1.4 Core Questions
e What do virtualization and containerization mean?

e How to deploy potentially complex software in a reproducible fashion?

2 Virtualization

2.1 History (1/2)
e Virtualization is an old concept

— IBM mainframes, 1960s
— Frequently cited survey article by Goldberg, 1974: [Gol74]
— Original motivation

x Resources of expensive mainframes better utilized with multi-
ple VMs

* Ability to run different OS versions in parallel, backwards com-
patibility

e 1980s, 1990s

— Modern multitasking OSs on cheap hardware

* Cheap hardware did not offer virtualization support
* Little use of virtualization

2.2 History (2/2)
e Ca. 2005

— PC success becomes problematic

* How to limit energy usage and management overhead of
fleets of PCs in data centers?

— One answer: Use virtualization for server consolidation

* Turn independent servers into VMs, then allocate them to single
server

- Servers often with low resource utilization (e.g., CPU usage
between 10% and 50% at Google in 2007, [BHOT7])

- Consolidated server with improved resource utilization

— Additional answer: Virtualization reduces management, testing, and
deployment overhead, see [Vog08] for Amazon

— Virtualization as enabler for cloud computing
e [Sol+07]: Containers for lightweight virtualization

e [Cas+19]: Serverless computing (beyond our scope)

https://en.wikipedia.org/wiki/Cloud_computing

2.3 Intuition and Examples

e Virtualization: Creation of virtual/abstract version of something

Virtual memory, recall OS concepts

*x Not our focus
— Network, e.g., overlay networks, software-defined networking
x Not our focus

— Execution environment (e.g., Java, Dotnet)

Hardware/system: virtual machine (VM)
e Typical meaning: virtual machine (VM)

— Virtual hardware
% Several OSs share same underlying hardware

— VMs isolated from each other

2.4 Definitions
e Cited from [PGT74] (bold face added)

— “A virtual machine is taken to be an efficient, isolated duplicate of
the real machine.”

— Made precise with Virtual Machine Monitor (VMM)

x “First, the VMM provides an environment for programs which
is essentially identical with the original machine; second, pro-
grams run in this environment show at worst only minor de-
creases in speed; and last, the VMM is in complete control
of system resources.”

- Essentially identical: Programs with same results, maybe
different timing

- Speed: Most instructions executed directly by CPU with no
VMM intervention

- Control: (1) Virtualized programs restricted to resources al-
located by VMM, (2) VMM can regain control over allocated
resources

x “A wirtual machine is the environment created by the virtual
machine monitor.”

2.5 Isolation

e Isolation of VMs: Illusion of exclusive hardware use (despite sharing be-
tween VMs)

— Related to “isolated duplicate” and “complete control” of [PG74]
e Sub-types (see [Sol+07; Fel+15])

— Resource isolation: Fair allocation and scheduling

https://oer.gitlab.io/OS/Operating-Systems-Memory-I.html
https://en.wikipedia.org/wiki/Overlay_network
https://en.wikipedia.org/wiki/Software-defined_networking

* Reservation (e.g., number of CPU cores and amount of RAM)
vs best-effort

— Fault isolation: Buggy component should not affect others
— Security isolation

% Configuration independence (global names/settings do not con-
flict)

- Applications with conflicting requirements for system-wide
configuration

- E.g., port 80 for Web servers, each application with own
version of shared libraries

* Safety (no access between VMs/containers)
x Beware! Lots of security issues in practice

- E.g., hypervisor privilege escalation and cross-VM side chan-
nel attacks

2.6 Layering with Virtualization

Virtual Machine 1 Virtual Machine 2

Figure 3: Layering with virtualization

2.6.1 Layering Explained

e Hypervisor or virtual machine manager (VMM) with full access to physical
hardware
— Most privileged code

* Details depend on CPU hardware

- E.g., kernel mode (CPU ring 0) or additional “root mode”
with more privileges than kernel mode

— Create abstract versions of hardware, to be used by guest OSs

* VM = Guest OS running on abstract hardware
* Host = Environment in which the VMM runs
- Host software may be full OS or specialized

e Guest OS is de-privileged

— No longer with full hardware access, e.g., CPU ring 1

https://www.startpage.com/do/search?q=hypervisor+privilege+escalation
https://www.startpage.com/do/search?q=cross-vm+side+channel+attack
https://www.startpage.com/do/search?q=cross-vm+side+channel+attack
https://oer.gitlab.io/OS/Operating-Systems-Interrupts.html#slide-kernel-mode

— Privileged/sensitive instructions lead to hypervisor

* Executed, translated, or emulated accordingly

e Each VM can run different OS
e VM backups/snaphots simplify management, placement, parallelization

e Sharing among applications in different VMs restricted, requires net-
working

— (Neither shared memory nor file nor pipes)
e Creation of more VMs with high overhead

— Each with full OS, own portion of underlying hardware

2.7 Review Question

e The Java VM was mentioned as variant of virtualization. Discuss whether
it satisfies the conditions for virtualization as defined in 1974.

3 Contalnerization

3.1 Basics
e Motivation: Trade isolation for efficiency (see [Sol+07])

— Main idea of containerization: Share kernel among containers

* (Instead of separate OS per VM)

e Mechanisms

— Add container ID to each process, add new access control checks to
system calls

— In case of Linux kernel
x Kernel namespaces
- Limit what is visible inside container
% Control groups (cgroups)
- Limit resource usage
x Copy-on-write, e.g., UnionFS
- New container without copying all files, localized changes

https://oer.gitlab.io/OS/Operating-Systems-Introduction.html#slide-system-calls
https://en.wikipedia.org/wiki/Linux_namespaces
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/UnionFS

3.2 Layering with Containerization

Container 2 Container 3

Container 1

Environment 2 based
on kernel of Host OS

Figure 4: Layering with containerization

3.3 Selected Technologies

& docker

Figure 5: “Docker logo” under Docker Brand Guidelines; from Docker

e Docker

— Image describes OS/application environment: What software/configuration?
*x Registries publish images
x Dockerfiles are build recipes for images in simple text format

— Container is process (set), created from image (image is template

for container)

e Kubernetes

Figure 6: “Kubernetes logo” under Kubernetes Branding Guidelines; from

GitHub

— Cluster manager for Docker
x Pod = group of containers sharing resources, unit, of deployment,

* Pods can be replicated (copied) for scalability
* Integrated load-balancer

https://www.docker.com/why-docker
https://www.docker.com/brand-guidelines
https://www.docker.com/sites/default/files/legal/docker_logos_2018.zip
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://github.com/kubernetes/kubernetes/blob/master/logo/usage_guidelines.md
https://raw.githubusercontent.com/kubernetes/kubernetes/master/logo/logo_with_border.png

3.3.1 On Images
e With VMs, you could install software as in any other OS
— Getting messy over time
e With Docker, images are defined via Dockerfiles

— Explicitly listing necessary pieces and dependencies
— Enforcing order and reproducibility

— Sample dockerfile (used in the past to generate reveal.js presentations
and PDF from org files):

FROM ubuntu

LABEL maintainer="Jens Lechtenbdrger"

RUN apt-get update && apt-get --no-install-recommends install -y \
ca-certificates emacs git \
texlive-bibtex-extra texlive-fonts-recommended texlive-generic-recommended \
texlive-latex-base texlive-latex-extra texlive-latex-recommended

COPY manage-packages.el /tmp/

3.4 Review Question

e Which conditions for virtualization as defined in 1974 does Docker satisfy?

4 Docker

4.1 Docker Installation
e Community Edition of Docker available for different OSs
— See here for installation links

e Install on one of your machines, ideally on one that you can bring to (or
access in) class

— Your installation may come with a graphical user interface (GUI),
which you do not need

* Some students perceive the GUI to be confusing

* Use command line instead to enter commands shown subsequently
(any terminal should work, maybe try Bash)

4.2 First Steps

e Run hello-world as instructed in Get Started
— In case of problems, please ask in the forum
e List your images and containers

— docker image 1s

— docker container 1ls -all

https://gitlab.com/oer/docker/blob/master/emacs-tex/Dockerfile
https://docs.docker.com/install/
https://oer.gitlab.io/OS/Operating-Systems-Introduction.html#slide-bash-access
https://docs.docker.com/get-started/

*x Help is available, e.g.:
- docker container --help

- docker container 1ls --help
e Maybe delete image and container

— docker rmi -f hello-world

4.3 A Web Server
e Run nginx

— docker run -p 8080:80 nginx

* -p: Web server listens on port 80 in container; bind to port 8080
on host

- Visit local server (see subsequent slide for Docker Toolbox
under Windows)

* Maybe add option --name my-nginx: Assign name to container
for subsequent use

- E.g., docker stop/start/logs/rm my-nginx
e Serve own HTML files

— Add option -v in above docker run ... (before nginx)

* Mount (make available) directory from host in container
- E.g.: -v /host-directory/with/html-files:/usr/share/nginx/html

- /usr/share/nginx/html is where nginx expects HTML files,
in particular index.html

- Thus, your HTML files replace default ones of nginx

4.3.1 Selected Errors

e Error message: name in use already

— You cannot use the same name multiple times with docker run
--name ...

— Instead: docker start my-nginx
e Error message: port is allocated already

— You cannot use option -p with same port in several docker run
invocations
*x Other container still running, stop first
- docker ps: Note ID or name
- docker stop <ID-or-name>
- docker run ...

* (Or some other process uses that port. Kill process or choose
different port.)

https://en.wikipedia.org/wiki/Nginx
http://localhost:8080

4.3.2 On Option -v
e Say, you start nginx with option -v but your files do not appear

— docker inspect <name-or-id-of-container>
* Check output for binds, telling you what is mapped to /usr/share/nginx/html
- May not meet your expectations

— Are you on Windows?
* Try -v C:\Users\... with Powershell
* Try -v C:\\Users/... with Bash
x Try -v /mnt/c/Users/... with WSL terminal

4.3.3 Docker Toolbox under Windows

e (I do not recommend this in any way. Switch to GNU /Linux.)

e Docker Toolbox installs a virtual machine, in which Docker runs

— Initial output informs about

x [P address of VM, e.g., 192.168.99.100
- Visit port 8080 on 192.168.99.100

* File system path
- /c/Program Files/Docker Toolbox

— Paths under C:\Users can be mounted by default
* K.g.,docker run -p 8080:80 -v /c/Users/<your-name>/<folder-with-index.html>:/u

nginx
- Maybe you need double slashes

5 Conclusions

5.1 Summary
e Virtual virtual machines are efficient, isolated duplicates of the real

machine

e Containers are running processes, defined by images

— Containers on one host share same OS kernel

e Virtual machines and containers
— can be contrasted in terms of their layering approaches

— allow to deploy software in well-defined environments

10

https://www.getgnulinux.org/en/switch_to_linux/
http://192.168.99.100:8080
https://stackoverflow.com/questions/33312662/docker-toolbox-mount-file-on-windows

5.2 OQOutlook

e Containerization (in combination with version control such as offered by
Git) is enabler of DevOps

— DevOps = Combination of Development and Operations, see [Jab+16;
Wie+19]

x Bridge gaps between teams and responsibilities

*x Aiming for rapid software release cycles with high degree of au-
tomation and stability

— Trend in software engineering

* Communication and collaboration, continuous integration (CI)
and continuous deployment (CD)

* Approach based on Git also called GitOps, see [Lim18]
- Self-service IT with proposals in pull requests (PRs)
- Infrastructure as Code (IaC)

Bibliography

[BHO7] L. A. Barroso and U. Holzle. “The Case for Energy-Proportional
Computing”. In: Computer 40.12 (2007), pp. 33-37. DOI: 10.1109/
MC.2007 .443. URL: https://www.barroso.org/publications/
ieee_computer(7.pdf.

[Cas+19] Paul Castro et al. “The Rise of Serverless Computing”. In: Commaun.
ACM 62.12 (Nov. 2019), pp. 44-54. DOIL: 10.1145/3368454. URL:
https://doi.org/10.1145/3368454.

[Fel+15] Wes Felter et al. “An updated performance comparison of virtual
machines and linux containers”. In: Performance Analysis of Systems
and Software (ISPASS), 2015 IEEE International Symposium On.
IEEE. 2015, pp. 171-172.

[Gol74] Robert P. Goldberg. “Survey of virtual machine research”. In: Com-
puter 7.6 (1974), pp. 34-45.

[Jab+16] Ramtin Jabbari et al. “What is DevOps? A Systematic Mapping
Study on Definitions and Practices”. In: Proceedings of the Scientific
Workshop Proceedings of XP2016. XP ’16 Workshops. 2016. DOI:
10.1145/2962695 . 2962707. URL: https://doi.org/10.1145/
2962695.2962707.

[Lim18] Thomas A. Limoncelli. “GitOps: A Path to More Self-Service IT”.
In: Commun. ACM 61.9 (2018), pp. 38—42. DOIL: 10.1145/3233241.
URL: https://doi.org/10.1145/3233241.

[PGT4] Gerald J. Popek and Robert P. Goldberg. “Formal Requirements for
Virtualizable Third Generation Architectures”. In: Commun. ACM
17.7 (July 1974), pp. 412-421. 18SN: 0001-0782. DOL: 10 . 1145/
361011.361073. URL: http://doi.acm.org/10.1145/361011.
361073.

11

https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1109/MC.2007.443
https://www.barroso.org/publications/ieee_computer07.pdf
https://www.barroso.org/publications/ieee_computer07.pdf
https://doi.org/10.1145/3368454
https://doi.org/10.1145/3368454
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/3233241
https://doi.org/10.1145/3233241
https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073

[Sol+07] Stephen Soltesz et al. “Container-based operating system virtual-
ization: a scalable, high-performance alternative to hypervisors”. In:
ACM SIGOPS Operating Systems Review. Vol. 41. 3. ACM. 2007,
pp. 275-287.

[Vog08] Werner Vogels. “Beyond Server Consolidation: Server Consolidation
Helps Companies Improve Resource Utilization, but Virtualization
Can Help in Other Ways, Too.” In: Queue 6.1 (2008), pp. 20-26.
DOI: 10.1145/ 1348583 . 1348590. URL: https://doi.org/10.
1145/1348583.1348590.

[Wie+19] Anna Wiedemann et al. “Research for Practice: The DevOps Phe-
nomenon”. In: Commun. ACM 62.8 (2019), pp. 44-49. por: 10.
1145/3331138. URL: https://doi.org/10.1145/3331138.

License Information

This document is part of a larger course. Source code and source files are
available on GitLab under free licenses.

Except where otherwise noted, the work “Docker Introduction”, (C) 2018-
2021 Jens Lechtenborger, is published under the Creative Commons license CC
BY-SA 4.0.

12

https://doi.org/10.1145/1348583.1348590
https://doi.org/10.1145/1348583.1348590
https://doi.org/10.1145/1348583.1348590
https://doi.org/10.1145/3331138
https://doi.org/10.1145/3331138
https://doi.org/10.1145/3331138
https://gitlab.com/oer/oer-courses/vm-neuland
https://gitlab.com/oer/oer-courses/vm-neuland
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Virtualization
	Containerization
	Docker
	Conclusions

