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1 Introduction

1.1 Motivation (1/2)

e Virtualization software provides virtual hardware

Virtual Machine 1 Virtual Machine 2

Figure 1: Layering with virtualization

— Virtualization implemented by piece of software called Hypervisor/ VMM
* VMM runs on (usual) host OS, translates access to real hardware

— Virtual hardware can have arbitrary features

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.
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* Largely independent of real hardware, say, ten network cards

— On top of virtual hardware, install operating systems (guests) and
other software to create virtual machines (VMs)
* Share resources of powerful server machine among several VMs
- E.g., your “own” server as VM in a project seminar
x Use VM as blueprint to share reliable environment with others
- Or to fire up lots of identical VMs for compute-intensive
tasks with cloud computing

This and the subsequent slide are intended as quick overview for virtualization and con-
tainerization. Terms used here as well as the layered figure are revisited later on.

1.2 Motivation (2/2)

e Containerization (e.g., with Docker) as lightweight variant of virtualization

Container 1 Container 2 Container 3

App B (with libraries)

Environment 2 based
on kernel of Host OS

Figure 2: Layering with containerization

— No virtual hardware, but shared OS kernel
— Use containers to execute software (versions) in controlled way
x Think of larger application that uses external libraries
* Libraries evolve, may introduce incompatible changes over time
- Specific version of application depends on specific versions of
libraries
- Container bundles “correct” versions

1.3 Learning Objectives
e Explain definitions of virtual machine and virtual machine monitor
e Explain and contrast virtualization and containerization

— Including isolation
— Including layering
e Use Docker for simple tasks

— E.g., start Web/Solid server with static files

— Interpret and modify simple docker files


https://en.wikipedia.org/wiki/Cloud_computing
https://oer.gitlab.io/OS/Operating-Systems-Introduction.html#slide-kernel-variants

1.4 Core Questions
e What do virtualization and containerization mean?

e How to deploy potentially complex software in a reproducible fashion?

2 Virtualization

2.1 History (1/2)
e Virtualization is an old concept

— IBM mainframes, 1960s
— Frequently cited survey article by Goldberg, 1974: [Gol74]
— Original motivation

x Resources of expensive mainframes better utilized with multi-
ple VMs

* Ability to run different OS versions in parallel, backwards com-
patibility

e 1980s, 1990s

— Modern multitasking OSs on cheap hardware

* Cheap hardware did not offer virtualization support
* Little use of virtualization

2.2 History (2/2)
e Ca. 2005

— PC success becomes problematic

* How to limit energy usage and management overhead of
fleets of PCs in data centers?

— One answer: Use virtualization for server consolidation

* Turn independent servers into VMs, then allocate them to single
server

- Servers often with low resource utilization (e.g., CPU usage
between 10% and 50% at Google in 2007, [BHOT7])

- Consolidated server with improved resource utilization

— Additional answer: Virtualization reduces management, testing, and
deployment overhead, see [Vog08] for Amazon

— Virtualization as enabler for cloud computing
e [Sol+07]: Containers for lightweight virtualization

e [Cas+19]: Serverless computing (beyond our scope)


https://en.wikipedia.org/wiki/Cloud_computing

2.3 Intuition and Examples

e Virtualization: Creation of virtual/abstract version of something

Virtual memory, recall OS concepts

*x Not our focus
— Network, e.g., overlay networks, software-defined networking
x Not our focus

— Execution environment (e.g., Java, Dotnet)

Hardware/system: virtual machine (VM)
e Typical meaning: virtual machine (VM)

— Virtual hardware
% Several OSs share same underlying hardware

— VMs isolated from each other

2.4 Definitions
e Cited from [PGT74] (bold face added)

— “A virtual machine is taken to be an efficient, isolated duplicate of
the real machine.”

— Made precise with Virtual Machine Monitor (VMM)

x “First, the VMM provides an environment for programs which
is essentially identical with the original machine; second, pro-
grams run in this environment show at worst only minor de-
creases in speed; and last, the VMM is in complete control
of system resources.”

- Essentially identical: Programs with same results, maybe
different timing

- Speed: Most instructions executed directly by CPU with no
VMM intervention

- Control: (1) Virtualized programs restricted to resources al-
located by VMM, (2) VMM can regain control over allocated
resources

x “A wirtual machine is the environment created by the virtual
machine monitor.”

2.5 Isolation

e Isolation of VMs: Illusion of exclusive hardware use (despite sharing be-
tween VMs)

— Related to “isolated duplicate” and “complete control” of [PG74]
e Sub-types (see [Sol+07; Fel+15])

— Resource isolation: Fair allocation and scheduling
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* Reservation (e.g., number of CPU cores and amount of RAM)
vs best-effort

— Fault isolation: Buggy component should not affect others
— Security isolation

% Configuration independence (global names/settings do not con-
flict)

- Applications with conflicting requirements for system-wide
configuration

- E.g., port 80 for Web servers, each application with own
version of shared libraries

* Safety (no access between VMs/containers)
x Beware! Lots of security issues in practice

- E.g., hypervisor privilege escalation and cross-VM side chan-
nel attacks

2.6 Layering with Virtualization

Virtual Machine 1 Virtual Machine 2

Figure 3: Layering with virtualization

2.6.1 Layering Explained

e Hypervisor or virtual machine manager (VMM) with full access to physical
hardware
— Most privileged code

* Details depend on CPU hardware

- E.g., kernel mode (CPU ring 0) or additional “root mode”
with more privileges than kernel mode

— Create abstract versions of hardware, to be used by guest OSs

* VM = Guest OS running on abstract hardware
* Host = Environment in which the VMM runs
- Host software may be full OS or specialized

e Guest OS is de-privileged

— No longer with full hardware access, e.g., CPU ring 1
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— Privileged/sensitive instructions lead to hypervisor

* Executed, translated, or emulated accordingly

e Each VM can run different OS
e VM backups/snaphots simplify management, placement, parallelization

e Sharing among applications in different VMs restricted, requires net-
working

— (Neither shared memory nor file nor pipes)
e Creation of more VMs with high overhead

— Each with full OS, own portion of underlying hardware

2.7 Review Question

e The Java VM was mentioned as variant of virtualization. Discuss whether
it satisfies the conditions for virtualization as defined in 1974.

3 Contalnerization

3.1 Basics
e Motivation: Trade isolation for efficiency (see [Sol+07])

— Main idea of containerization: Share kernel among containers

* (Instead of separate OS per VM)

e Mechanisms

— Add container ID to each process, add new access control checks to
system calls

— In case of Linux kernel
x Kernel namespaces
- Limit what is visible inside container
% Control groups (cgroups)
- Limit resource usage
x Copy-on-write, e.g., UnionFS
- New container without copying all files, localized changes
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3.2 Layering with Containerization
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Container 1

Environment 2 based
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Figure 4: Layering with containerization

3.3 Selected Technologies

& docker

Figure 5: “Docker logo” under Docker Brand Guidelines; from Docker

e Docker

— Image describes OS/application environment: What software/configuration?
*x Registries publish images
x Dockerfiles are build recipes for images in simple text format

— Container is process (set), created from image (image is template

for container)

e Kubernetes

Figure 6: “Kubernetes logo” under Kubernetes Branding Guidelines; from

GitHub

— Cluster manager for Docker
x Pod = group of containers sharing resources, unit, of deployment,

* Pods can be replicated (copied) for scalability
* Integrated load-balancer
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3.3.1 On Images
e With VMs, you could install software as in any other OS
— Getting messy over time
e With Docker, images are defined via Dockerfiles

— Explicitly listing necessary pieces and dependencies
— Enforcing order and reproducibility

— Sample dockerfile (used in the past to generate reveal.js presentations
and PDF from org files):

FROM ubuntu

LABEL maintainer="Jens Lechtenbdrger"

RUN apt-get update && apt-get --no-install-recommends install -y \
ca-certificates emacs git \
texlive-bibtex-extra texlive-fonts-recommended texlive-generic-recommended \
texlive-latex-base texlive-latex-extra texlive-latex-recommended

COPY manage-packages.el /tmp/

3.4 Review Question

e Which conditions for virtualization as defined in 1974 does Docker satisfy?

4 Docker

4.1 Docker Installation
e Community Edition of Docker available for different OSs
— See here for installation links

e Install on one of your machines, ideally on one that you can bring to (or
access in) class

— Your installation may come with a graphical user interface (GUI),
which you do not need

* Some students perceive the GUI to be confusing

* Use command line instead to enter commands shown subsequently
(any terminal should work, maybe try Bash)

4.2 First Steps

e Run hello-world as instructed in Get Started
— In case of problems, please ask in the forum
e List your images and containers

— docker image 1s

— docker container 1ls -all


https://gitlab.com/oer/docker/blob/master/emacs-tex/Dockerfile
https://docs.docker.com/install/
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*x Help is available, e.g.:
- docker container --help

- docker container 1ls --help
e Maybe delete image and container

— docker rmi -f hello-world

4.3 A Web Server
e Run nginx

— docker run -p 8080:80 nginx

* -p: Web server listens on port 80 in container; bind to port 8080
on host

- Visit local server (see subsequent slide for Docker Toolbox
under Windows)

* Maybe add option --name my-nginx: Assign name to container
for subsequent use

- E.g., docker stop/start/logs/rm my-nginx
e Serve own HTML files

— Add option -v in above docker run ... (before nginx)

* Mount (make available) directory from host in container
- E.g.: -v /host-directory/with/html-files:/usr/share/nginx/html

- /usr/share/nginx/html is where nginx expects HTML files,
in particular index.html

- Thus, your HTML files replace default ones of nginx

4.3.1 Selected Errors

e Error message: name in use already

— You cannot use the same name multiple times with docker run
--name ...

— Instead: docker start my-nginx
e Error message: port is allocated already

— You cannot use option -p with same port in several docker run
invocations
*x Other container still running, stop first
- docker ps: Note ID or name
- docker stop <ID-or-name>
- docker run ...

* (Or some other process uses that port. Kill process or choose
different port.)


https://en.wikipedia.org/wiki/Nginx
http://localhost:8080

4.3.2 On Option -v
e Say, you start nginx with option -v but your files do not appear

— docker inspect <name-or-id-of-container>
* Check output for binds, telling you what is mapped to /usr/share/nginx/html
- May not meet your expectations

— Are you on Windows?
* Try -v C:\Users\... with Powershell
* Try -v C:\\Users/... with Bash
x Try -v /mnt/c/Users/... with WSL terminal

4.3.3 Docker Toolbox under Windows

e (I do not recommend this in any way. Switch to GNU /Linux.)

e Docker Toolbox installs a virtual machine, in which Docker runs

— Initial output informs about

x [P address of VM, e.g., 192.168.99.100
- Visit port 8080 on 192.168.99.100

* File system path
- /c/Program Files/Docker Toolbox

— Paths under C:\Users can be mounted by default
* K.g.,docker run -p 8080:80 -v /c/Users/<your-name>/<folder-with-index.html>:/u

nginx
- Maybe you need double slashes

5 Conclusions

5.1 Summary
e Virtual virtual machines are efficient, isolated duplicates of the real

machine

e Containers are running processes, defined by images

— Containers on one host share same OS kernel

e Virtual machines and containers
— can be contrasted in terms of their layering approaches

— allow to deploy software in well-defined environments
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5.2 OQOutlook

e Containerization (in combination with version control such as offered by
Git) is enabler of DevOps

— DevOps = Combination of Development and Operations, see [Jab+16;
Wie+19]

x Bridge gaps between teams and responsibilities

*x Aiming for rapid software release cycles with high degree of au-
tomation and stability

— Trend in software engineering

* Communication and collaboration, continuous integration (CI)
and continuous deployment (CD)

* Approach based on Git also called GitOps, see [Lim18]
- Self-service IT with proposals in pull requests (PRs)
- Infrastructure as Code (IaC)
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available on GitLab under free licenses.
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2021 Jens Lechtenborger, is published under the Creative Commons license CC
BY-SA 4.0.
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