
Virtual Addressing and Paging *

Jens Lechtenbörger

IT Systems, Summer Term 2024

1 Introduction

The presentation accompanying this text is about virtual memory management,
which involves the translation of virtual addresses into physical addresses. Phys-
ical addresses are what you know from RAM in Hack as address input bits,
while virtual addresses do not exist in Hack. (Section 2 serves as reminder of
RAM in Hack.)

Virtual addressing provides an additional layer of abstraction and isolation
for physical memory used by processes, threads, and programmers. Oversimpli-
fying a bit, the OS manages each running program as process, which you can
think of as group of threads that shares one virtual address space. Abstraction
is provided as at di�erent points in time, the same piece of a process (identi-
�ed by a single virtual address) may be located at di�erent locations in RAM
(identi�ed by di�erent physical addresses) or may not be present in RAM at all.
Isolation is provided as di�erent processes have di�erent address spaces, which
are protected from each other. So a virtual address, say 42, identi�es the same
instruction or piece of data for all threads of one process, while 42 points to
something else entirely in the context of other processes.

2 Hack Reminder

This section serves as reminder of Hack memory.
Recall that RAM chips of Hack consist of registers (each capable of storing

one word, which in turn consists of 16 bits) and some addressing logic. In
particular, such chips have an address input to address individual words. E.g.,
a RAM16K chip consists of 16384 registers and has an input address[14] (214 =
16384). In general, for a RAM of size n (where n is a power of 2), k = log2n
address bits are necessary (and we have 2k = n). Such an address input is a
physical address as it determines the number of a physical storage cell (a 16-bit
register in Hack).

The Hack architecture uses 15-bit memory addresses and has a RAM of 16384
words (which in turn is embedded into larger memory containing also regions
for screen and keyboard). A-instructions embed physical (memory) addresses;
Hack does not support virtual addressing. In Hack, and in general, a physical

*This PDF document is an inferior version of an OER in HTML format; free/libre Org
mode source repository.

1

https://oer.gitlab.io/oer-courses/it-systems/texts/virtual-addressing.html
https://gitlab.com/oer/oer-courses/it-systems
https://gitlab.com/oer/oer-courses/it-systems


address is an address that is placed on the memory bus to specify a memory
location (the address input in Hack HDL �les).

Consider the minor variant of a SUM program, which adds the numbers
from 1 to 100, and suppose that it starts at RAM address 0 as shown next. (A
real Hack program would be located in ROM; here we suppose the typical von
Neumann case of data and code in RAM.) Make sure that you understand the
comments in that program.

// Adds 1+...+100 and stores result in variable sum.

// The first instruction is located in RAM[0].

@2048 // 2048 is the memory location for loop variable i.

// The second instruction is located in RAM[1].

M=1 // RAM[2048] = i = 1

// The third instruction is located in RAM[2].

@2049 // 2049 is the memory location for variable sum.

// The fourth instruction is located in RAM[3].

M=0 // RAM[2049] = sum = 0

(LOOP) // This label represents the address of the following

// instruction, which is 4.

// The following instruction is located in RAM[4].

// From now on, RAM locations will be indicated inline.

@2048 // RAM[4]

D=M // RAM[5], D = i

@100 // RAM[6]

D=D-A // RAM[7], D = i - 100

@END // RAM[8], below we'll see that END is 18, so the

// assembler produces @18 here.

D;JGT // RAM[9], if (i-100) > 0 goto END

@2048 // RAM[10]

D=M // RAM[11], D = i

@2049 // RAM[12]

M=D+M // RAM[13], sum += i

@2048 // RAM[14]

M=M+1 // RAM[15], i++

@LOOP // RAM[16], as LOOP is really 4, we could have

// written @4, which is what the assembler will

// produce anyways. If that is not obvious, try it!

0;JMP // RAM[17], goto LOOP

(END) // END represents 18

@END // RAM[18], as END is really 18, the assembler

// produces @18 here.

0;JMP // RAM[19], infinite loop, jumping back to

// instruction @18.

// Instructions for other functionality might occur here,

// currently memory is unused until address 2048.

// RAM[2048]: location of variable i

// RAM[2049]: location of variable sum

Suppose that you wanted to load several programs into RAM, running several
processes and threads (maybe along with round robin scheduling). On disk, each

2



program would embed hard-wired physical memory addresses, e.g., 4, 18, 2048,
2049 for the sample program above. Thus, such a program must be loaded to
its �xed start address, even if that region is in use by another program while
other memory regions are free.

To overcome this shortcoming, from now on we assume that addresses oc-
curring in programs on disk are really virtual addresses.

3 Frames, pages, page tables

The OS does not (in general) allocate individual bytes or words (as this would
lead to considerable management overhead), but allocates larger units. This
section discusses a common technique called paging. With paging, the virtual
address space of a process is split into pages, while RAM with its physical
addresses is split into frames. Frames and pages share the same size.

When a program is to be executed, it needs to be loaded into RAM. Towards
that end, the OS allocates frames to the process representing that program and
loads (some or all) pages into frames. The data structure to record the mapping
from pages to frames is called page table.

Given a RAM of 16384 words, RAM could be split into 16 frames of 1024
words each, which are numbered from 0 to 15. Thus, RAM[0] � RAM[1023] are
located in frame 0, RAM[1024] � RAM[2047] are located in frame 1, etc. For
example, RAM[42] is located in frame 0. In fact, RAM[42] really is the 43th
word within frame 0. Positions within frames and pages are called o�sets. For
example, RAM[1042] is located in frame 1, at o�set 1042− 1024 = 18.

Suppose that virtual addresses are 15 bit wide (leading to addresses from 0
to 215 − 1 = 32767), and that the virtual address space is split into so-called
pages, which have the same size as frames, here 1024 words each. Thus, the
entire virtual address space covers 32 pages. (You may wonder that the virtual
address space is twice as large as the physical RAM. This curious fact does not
pose a problem as sketched in Section 5.)

If a process is started, it needs a certain amount of RAM, and the OS
allocates memory by allocating entire frames. In the following, suppose again
that RAM is used for code and data.

Consider a process P that in total needs 2050 words (similarly to the SUM
program shown above, which extends from 0 to 2049). Now suppose that 1150
words are used for code and data (stored in two pages on disk) and 900 words for
internal computations (e.g., variables). That process needs three pages (num-
bered 0, 1, 2) to cover its virtual address space. (Two pages allow for 2048 words,
while the process needs 2050 words. As a side remark: Code and data might
be allocated in separate RAM areas, so-called segments. For simplicity, assume
that they are not separated here.) All memory locations occurring within the
code on disk are virtual addresses now, so the instruction sum += i at virtual
address 13 changes the value of virtual address 2049 (which is part of page 2
with its address range 2048 � 3071).

When P starts, the OS needs to transfer the two pages with code and data
from disk to frames in RAM and allocate a third frame for the third page. The
OS keeps track which frames are free and assigns three to P (assuming that
su�cient free frames exist; if they do not exist, page replacement (swapping) is
necessary, which will be discussed separately). The assignment from pages to

3



frames is stored in a data structure called page table, and every process has its
own page table (which is necessary as (a) every process has its own page number
0 and (b) several of those pages numbered 0 may reside in RAM simultaneously).
E.g., with several frames allocated to other processes, pages 0 and 1 with code
and data of P might be allocated to frames 4 and 5, resp., while page 2 might be
allocated to frame 12. The resulting page table is shown in Table 1. (Note that
page numbers do not need to be included as they are implicitly given by row
numbers starting from 0. Also, later on you will see that page tables contain
additional columns with control bits, which is left out for simplicity here.)

Table 1: P's page table
Frame No.

4
5
12

When instructions are executed, the CPU'smemory management unit (MMU)
consults the page table to translate virtual addresses into physical ones. Con-
sider the instruction sum += i at virtual address 13 referring to data at virtual
address 2049 mentioned above. Virtual address 13 is part of page 0 (ranging
from virtual address 0 to 1023) at o�set 13. The page table indicates that page
0 is located in frame 4. Frame 4 starts at physical address 4 · 1024, and so the
physical address of the instruction itself is 4 · 1024+13 = 4109, i.e., RAM[4109].
Thus, the program counter (PC) has the value 4109 while the instruction is
executed. During execution of the instruction, the MMU consults the page ta-
ble of the process to which the currently running thread belongs to translate
virtual address 2049 into a physical one: Virtual address 2049 is located in page
2 at o�set 1 (2049 = 2 · 1024 + 1), and the page table shows that page 2 is
located in frame 12. Thus, the physical address for the necessary piece of data
is 12 · 1024 + 1 = 12289, i.e., RAM[12289].

To sum up, programs make use of stable virtual addresses, while physical
addresses are determined �exibly at run-time. Hard-wired physical addresses
are avoided.

4 Generalizations

Di�erent processors use di�erent numbers of bits for addresses; typical sizes
include 8, 16, 32, 48, 64 bits (note that bit is often abbreviated with �b�, while
byte as unit of 8 bits is abbreviated with �B�). Importantly, addresses refer to
byte-sized storage cells (i.e., each cell can store 8 bits), not to words (which is
an exceptional case for Hack).

Suppose addresses of 32 bits are used. Then, 232 B = 4 GiB can be addressed.
(Recall that Ki, Gi, etc. are standardized pre�xes for powers of two that are not
�too far away� form everyday pre�xes K and G for powers of 10.) A typical size
for frames and pages might be 212 B = 4 KiB. Please convince yourself that in
this situation the 12 least-signi�cant bits (out of all 32 bits) are used to address
bytes within pages and frames, i.e., 12 bits determine the o�set, while 20 bits
remain to enumerate pages and frames. Thus, there are 220 pages (about a
million). (In a 32-bit system with less than 4 GiB of RAM, less than 220 frames

4



are available for allocation by the OS, of course. Also, if you do the math for
our everyday 64-bit processors, which often use 48-bit addresses, it should be
obvious that the size of virtual address spaces is much larger than what we
typically have available in terms of RAM.)

As explained above, the page table contains one entry per page (a million
entries, per process!), indicating the frame where that page's data is located (if
that data is present in RAM at all). Please convince yourself that the translation
of a virtual into a physical address is performed by replacing the 20 bits for the
page number with the 20 bits for the frame number found in the page table.
Note that the 12 o�set-bits remain unchanged, as pages and frames have the
same size.

5 Locality and Page Faults

The challenge that virtual address spaces may be much larger than physical
RAM can be overcome by using virtual memory. Brie�y, the key insight is a
locality principle stating that processes (and threads) typically use neighboring
pieces of instructions and data over extended periods of time: think of the
execution of some method manipulating an object or a loop iterating over an
array, for example. In both cases, all memory references can likely be served
from two pages: one for code and one for data. Thus, over some period of time,
a typical process needs very few of its pages in RAM (this set of pages is called
working set, and page replacement policies of the OS aim to keep the working
sets of processes in RAM). Consequently, lots of threads of processes with huge
virtual address spaces may be kept in state Runnable by the OS with few
frames in RAM.

When a thread executes a machine instruction with a virtual address whose
page is not present in RAM, a special type of interrupt, called page fault, occurs.
The handler for that interrupt, the page fault handler, is responsible for the
transfer of that page from disk to RAM. While the transfer is ongoing, the
thread is blocked by the OS.

License Information

Source �les are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

Except where otherwise noted, the work �Virtual Addressing and Paging�,©
2017-2018, 2020-2022, 2024 Jens Lechtenbörger, is published under the Creative
Commons license CC BY-SA 4.0.

5

https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Hack Reminder
	Frames, pages, page tables
	Generalizations
	Locality and Page Faults

