
Processes 12

IT Systems, Summer Term 2026

Dr. Matthes Elstermann

This presentation is the �nal one on OS topics. It explains the process concept as central abstraction for resource management
of running programs, where the OS isolates di�erent processes from each other. Importantly, the process concept combines major
topics discussed so far: Processes contain threads as units of OS scheduling, which cooperate and share resources, e.g., virtual
memory and �les.

1 Introduction

Let us look at essential questions and terminology of our topic.

1.1 Core Questions

� What is a process?

� How are �les represented by the OS, and how are they used for inter-process communication?

(Based on Chapter 7 and Section 8.3 of (Hailperin 2019))
This presentation addresses the following questions:
What is a process?
How are �les represented by the OS, and how are they used for inter-process communication?

1.2 Learning Objectives

� Explain process and thread concept

� Perform simple tasks in Bash (continued)

• View directories and �les, build pipelines, redirect in- or output, list processes with ps

� Explain �le descriptors for commands and pipelines

� Explain access control, access matrix, and ACLs

• Use chmod to modify �le permissions

Take some time to think about the learning objectives speci�ed here.

1.3 Retrieval practice

Let us see what prior knowledge is involved subsequently.

1.3.1 Previously on OS . . .

� What are processes and threads?

� What is a thread control block?

� What are system calls?

� How to execute shell commands as part of The Command Line Murders?

Before you continue, answer the questions listed here, ideally, without outside help.

1.3.2 Quiz 1

Take this quiz.

1.3.3 Quiz 2

Take this quiz.

1This PDF document is an inferior version of an OER in HTML format; free/libre Org mode source repository.
2Material created by Jens Lechtenbörger; see end of document for license information.

1

https://oer.gitlab.io/oer-courses/it-systems/16-OS-Processes.html
https://gitlab.com/oer/oer-courses/it-systems

1.3.4 Quiz 3

Take this quiz.

Agenda

The agenda for the remainder of this presentation is as follows.
We revisit the process concept in OSs and provide more details. Then we revisit �le I/O commands that you know from the

command line murders and explain underlying mechanisms in terms of �le descriptors. In addition, we discuss some aspects of
access rights in OSs, with a focus on �le permissions.

2 Processes

Warning! External �gure not included: �/proc� © 2018 Julia Evans, all rights reserved from julia's drawings.
Displayed here with personal permission.
(See HTML presentation instead.)

The Linux kernel exports various pieces of management information in the special directory /proc, which is a great place to
explore what is happening behind the scenes. This drawing illustrates some pieces of information o�ered about processes in that
directory, which is revisited several times later on.

2.1 Processes

� First approximation: Process ≈ program in execution

• However

• Single program can create multiple processes

• E.g., web browser with process per tab model

• What looks like a separate program may not live inside its own process

• E.g., separate GNU Emacs window showing PDF �le via PDF Tools

• (Window contents might be produced with help of di�erent process, though)

Processes are central management units of OSs. As you already know, you can think of a process as a program in execution.
E.g., if you open an app on your phone, this app is usually managed as a process by the OS. Also, if you use a command line
(as in The Command Line Murders), the command line itself is one process (whose instructions are executed in the context of
a virtual address space), while commands such as grep lead to the creation of new processes (with their own instructions and
address spaces).

However, as you have seen already, the picture is more complicated as some �apps� may really be managed with multiple processes
by the OS, while also a single process may provide functionality that looks like multiple �apps�.

� Reality: Process = Whatever your OS de�nes as such

• Unit of management and protection

• One or more threads of execution

• Address space in virtual memory, shared by threads within process

• Management information in process control blocks

• Access rights

• Resource allocation

• Miscellaneous context

Ultimately, a process is whatever your OS de�nes to be a process. Each process is associated with one or more threads to
execute instructions and a single virtual address space that is shared by its threads and isolated from the address spaces of other
processes (and their threads).

Similarly to the use of thread control blocks to record management information for threads, the OS uses a process control block
for each process, where, next to other details, it keeps track of resources used by the process (and its threads). We will in particular
look at the management of �les with �le descriptors and access rights, and we will do so via examples of GNU/Linux.

2.2 Process Creation

� OS starts

• Check your OS's tool of choice to inspect processes after boot

Your operating system starts lots of processes during boot. It starts more when you log in.
Check out your system: Which processes are present? Which ones seem to be legitimate?
On Linux (and macOS), ps is a standard tool, to be revisited subsequently.
On Windows, process explorer is a powerful alternative to the task manager.

2

https://drawings.jvns.ca/proc/
https://chromium.googlesource.com/chromium/src/+/main/docs/process_model_and_site_isolation.md#historical-modes
https://www.gnu.org/software/emacs/
https://github.com/politza/pdf-tools
https://learn.microsoft.com/en-us/sysinternals/downloads/process-explorer

� User starts program

• E.g., touch, click, type, speak, shake

� Processes start other processes

• POSIX standard with Process management API; see (Hailperin 2019)

Users start further processes, depending on the device and OS by di�erent types of interactions, e.g., touching, clicking, or
typing. In fact, with their interactions, users really ask some process, which implements a user interface, to start further processes.
That process in turn uses system calls for process creation.

Also without user interaction, processes may start other processes, e.g., a browser with a �process per tab� model. While details
of underlying APIs are not important for us, note that POSIX is a standard aiming for compatibility between OSs.

This standard speci�es an API for process management, and it also speci�es details about �le access to be addressed subse-
quently.

2.2.1 Bash as Command Line

� Recall: Command line as interface to OS to execute processes

• Unix command line historically called �shell�

• Command line itself is a process

• Lots of shell variants; Bash from The Command Line Murders used here

A command line, or shell, runs as process and provides a textual user interface, with which more processes can be executed. We
only consider the Bash in this course.

• Command line can (1) execute builtin commands and (2) create processes for other commands

1. Builtin commands are executed internally

• Type help to execute one and see all of them

Importantly, not every typed command leads to the creation of a new process. Instead, every shell o�ers a set of builtin
commands, which are executed internally, as part of the shell's process. Execute the builtin command help to learn more.

2. Programs are executed as new child processes (requires system calls)

• E.g., cat, grep, less, man, ps

• By default, while child process for program runs, process of bash waits (not on CPU but blocked) for
return value of child

In addition, every operating system comes with programs, and those programs can also be executed from the shell, to be
managed as processes by the OS. As mentioned earlier, If a process P creates another process C, then P is called parent
process of C and C is called child process of P.

In GNU/Linux, we expect a standard set of preinstalled utility programs that can be executed of child processes of the
command line, e.g., the ones listed here, but also text editors, web browsers, games, etc.

If you execute a program in the command line, then by default the process of the command line is blocked, waiting for a
return value from a new child process that runs the program.

2.3 Process Control Block

� Similarly to thread control blocks the OS manages process control blocks for processes

• Numerical IDs (e.g., own and parent)

• Address space

• Resources (shared by threads)

• E.g., �le descriptors discussed next

• Security information

• Related to access rights

• And more, beyond course, e.g.:

• Interprocess communication with signals

Similarly to thread control blocks for threads, the OS manages process control blocks for processes.
Typical pieces of information are listed here, including numerical identi�ers for the process itself and its parent process;

management information for virtual memory, for resources such as �les, to manage access rights, and signals for communication
between processes.

Note that the process control block collects information that is shared by all threads of the process, while thread control blocks
are about information that is speci�c to each thread.

Of course, implementations across OSs di�er considerably. Beyond class goals, the Linux kernel, for example, uses the same
structure for process control blocks and thread control blocks, where process information shown on this slide is only stored once in
memory. Such memory areas are then referenced with pointers from all thread control blocks that share the same information.

3

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29

2.3.1 Seeing Processes and Threads on Linux

� Linux kernel o�ers /proc (drawing) (man page o�ers details)

• Pseudo-�lesystem as interface to Linux kernel data structures
On Linux systems, the directory /proc is a so-called pseudo-�lesystem. It looks and feels like any other directory, but it does
not contain �real� �les. Instead, it exports kernel management data through the interface of a �lesystem.

On other systems, this directory may be missing or be incomplete.

• Subdirectories per process ID (e.g., /proc/42) with details of process control block for process with ID
42
For example, every process and every thread has a numeric identi�er, ID for short, and you �nd a subdirectory under /proc
for these numbers. In turn, �les and directories in that subdirectory show management information including details of
process and thread control blocks.
On a side note, the ID assigned to the �rst thread of a process is equal to the process ID.

• Process listing command ps inspects /proc

• (Use man ps for implementation-speci�c details, following options are for GNU/Linux)

• ps -e shows some details on all processes (IDs, time, etc.)

• Option -L adds thread information, option -f for �full format�, e.g.: ps -eLf

• (�L� for �light weight process�, a synonym for thread; column LWP shows thread IDs)
On GNU/Linux, the command ps lists running processes, and it does so by inspecting the directory /proc. As usual, the
manual page contains all details about the command. In particular, it uses �light weight process� as synonym for �thread�.
By default, threads are not shown in ps output, but you need an extra option as suggested on the slide.

• ps -C <name> shows some details on all processes with the given name
Depending on the implementation of ps, you may also be able to display only information related to processes with a known
command name as shown here.
If that option is not available in your implementation, you can pipe the output of ps to grep. In the grep output, column
headers are �ltered out. Thus, check without grep �rst, and take note of column headers. (E.g., for Cygwin or macOS.)

� Other OSs come with their own tools

Of course, other OSs come with their own tools.

3 File Descriptors

� Recall The Command Line Murders

1. cd clmystery/mystery

2. head crimescene | grep Alice

• crimescene head grep console output

3. head crimescene > first10lines

grep Alice < first10lines

• crimescene head first10lines grep console output

� (Files are covered in Section 8.3 of (Hailperin 2019))

Files are a common OS abstraction to organize data as named streams of bytes that are stored persistently. Recall that
persistence means that �les should keep their data beyond power failures.

(As a side note, we can also create �le systems in RAM, whose contents are forgotten, when power is turned o�. . .)
As you experienced in the context of The Command Line Murders, �le systems provide a hierarchically organized name space,

where �les are located in directories. (In fact, directories are just �les with special properties, but we do not go into details here.)
In the context of The Command Line Murders, you saw that �les can serve as inputs and outputs of processes and that one

process can communicate its output with the pipe symbol as input to another process. Thus, you are able to explain how the
commands shown under items (2) and (3) here produce the same �nal output. The bullet points underneath the commands are
supposed to visualize the �ow of data with squiggly arrows, where �les are shown in blue, commands in black.

(Please think about di�erences and commonalities: Both create one process for head and one for grep. One requires more
typing than the other. One requires the creation of an additional �le, which is left around and may not be relevant afterwards. . .)

3.1 File Descriptors

� OS represents open �les via integer numbers called �le descriptors

Processes invoke system calls to open �les and to work on �les' contents. The OS represents each �le opened by a process with a
�le descriptor, which is just an integer number that is returned from the system call that opened the �le. Afterwards, processes
invoke further �le operations with system calls on such �le descriptors, e.g., read and write.

Importantly, �le descriptors are local to processes. Thus, the same number, say 5, may refer to �le instructions for one process
but to another �le for a di�erent process; in fact, for some processes, 5 may not be a valid �le descriptor at all.

4

https://man7.org/linux/man-pages/man5/proc.5.html
https://superuser.com/questions/453762/how-to-select-processes-by-command-name-when-using-ps-in-mac-os-x

• Files are abstracted as named streams of bytes

Each �le has a name, and is just used as stream of bytes, regardless of its format and contents. E.g., a text �le is a stream of
characters, while a movie �le contains binary data, both of which are accessed in the same way.

• File abstraction includes �real� �les, directories, devices, network access, and more

• Typical operations: open, close, read, write

Importantly, the �le abstraction o�ers a uniform interface to all kinds of data sources, including directories and network
connections.

Typical operations on �les are open, close, read, and write, o�ered by system calls. Here, open returns a new �le descriptor
for some �le. That �le descriptor can then be used subsequently to read or write from the �le.

• POSIX standard describes three descriptors (numbered 0, 1, 2) for every process

Figure 1: �Standard �le descriptors� by Jens Lechtenbörger under CC BY-SA 4.0; using UXWing icons: key-
board, monitor, operations; from GitLab

0. Standard input, stdin (e.g., keyboard input)

1. Standard output, stdout (e.g., print to screen/terminal)

2. Standard error, stderr (e.g., print error message to terminal)

The POSIX standard speci�es three �le descriptors for every process, which are numbered 0, 1, and 2.

File descriptor 0 is called standard input, and reading from it can be used for keyboard input on the command line.

File descriptor 1 is called standard output, and writing to it can be used to print output on the command line.

File descriptor 2 is called standard error, and writing to it can be used to print error messages. So, both, standard output
and standard error can print to the command line.

As a programmer, you need to decide what to print where (if at all). You should choose standard output for ordinary output
of your program, and standard error for error messages. Those two types of messages can then be distinguished semantically
and, e.g., be sent to di�erent �les via redirection or to di�erent consumers in general.

3.2 Drawing on File Descriptors

Warning! External �gure not included: �File descriptors� © 2018 Julia Evans, all rights reserved from julia's
drawings. Displayed here with personal permission.
(See HTML presentation instead.)

This drawing illustrates various aspects of �le descriptors, most of which were mentioned already. Maybe note the command
in the second picture to list open �les.

3.3 Files/Streams for IPC

� IPC = Inter-process communication

• Communication between processes

5

https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://uxwing.com/computer-keyboard-wired-icon/
https://uxwing.com/computer-keyboard-wired-icon/
https://uxwing.com/programmer-computer-icon/
https://uxwing.com/operations-icon/
https://gitlab.com/oer/figures/blob/master/OS/file-descriptors.svg
https://drawings.jvns.ca/file-descriptors/
https://drawings.jvns.ca/file-descriptors/

• Files and streams enable communication

• (Next to other mechanisms, e.g., shared memory, signals, networking)

Files can be used for interprocess communication, where di�erent processes communicate by reading and writing on the same
�le or set of �les.

As side note, other mechanisms for communication between processes exist as well. E.g., with shared memory, some frames
may be embedded into virtual address spaces of several processes, giving up address space isolation for speci�c purposes, e.g., to
share code or data structures between processes.

Also, processes can send signals to each other (via the OS). You may know this from the kill command, which allows users to
terminate running processes. Actually, this command can send di�erent signals, which is beyond the scope of our course.

With networking functionality, even processes on di�erent computers can communicate with each other, e.g., web browsers and
web servers.

� Files provide persistent storage

• Written/created by one process

• Potentially accessed by other processes, communication, e.g.:

• Files with source code

• Write source code in editors (over time, di�erent processes)

• Perform quality checks on source �les with specialized tools (other processes, maybe passing results to
editor)

• Compile source code to executable code

• Collect log messages from several processes in one �le; analysis of �le contents with alerting by separate
process

As mentioned already, �les are usually stored persistently on secondary storage devices.
Thus, �les enable decoupled, asynchronous communication, examples of which are listed in bullet points on the slide.

3.4 Redirection of Streams

� Streams of bytes can be redirected

• E.g., send output to �le instead of terminal

• head names.txt > first10names.txt

• (Recall: This command occurs in cheatsheet of The Command Line Murders)

• Code for head invokes system calls

• open �le names.txt, results in newly allocated �le descriptor

• read from �le descriptor for names.txt

• write to stdout (opened automatically by default)

• Operator > redirects stdout of process to �le first10names.txt

Here you see some details about a command which you know from The Command Line Murders.

The program head accesses a �le and prints some output, by default on the commend line. In terms of �le descriptors, it asks the
OS to open the input �le, which results in a newly allocated �le descriptor, i.e., some number larger than those of the standard
�le descriptors, which in turn can then be used to read contents of the �le. The program really writes its output to stdout,
which the command line by default prints in the terminal. With the output redirection by the command line shown here, stdout
is redirected to a �le.

• Also, lots of commands can access data on stdin

• head < names.txt

• Operator < redirects �le to stdin of process; here, access of names.txt via stdin

Programs may also be able to access input on stdin, and head is an example for such programs: When no �le name is passed as
argument, head reads from stdin, i.e., from �le descriptor 0. With the input redirection shown here, the command line makes
the contents of the �le available on stdin for head.

3.5 Streams for IPC

� Processes can communicate with pipelines/pipes

• One process connects stream as writer into pipeline

• Second process connects stream as reader from pipeline

• Pipelines (and �les) are passive objects (used by processes)

6

� E.g., send stdout of one process to stdin of another

• head names.txt | grep "Steve"

• (Recall: This pipeline occurs in cheatsheet of The Command Line Murders)

• Here, stdout of process for head connected via pipe operator (|) with stdin of process for grep

• In contrast to �les, pipes do not store data persistently

Here you see some details about a command which you know from The Command Line Murders.
In this case, head sends its output into a pipeline, or pipe for short, from which grep reads its input. In terms of �le descriptors,

the stdout of the process for head is connected via a pipe with the stdin of the process for grep.
Importantly, pipe and �les are passive objects, to be used by threads in processes as active subjects. Note that the use of �les

and pipe does not create additional threads.

3.5.1 Drawing on Pipes

Warning! External �gure not included: �Pipes� © 2016 Julia Evans, all rights reserved from julia's drawings.
Displayed here with personal permission.
(See HTML presentation instead.)

The upper row of this drawing visualizes aspects of pipes discussed so far.
The lower row starts with aspects beyond class topics such as bu�ering, which may limit or block the writing thread, or signals

as noti�cation if the target terminates.
Finally, as already mentioned in the cheatsheet of The Command Line Murders, we can build pipelines with an arbitrary

number of stages.

3.6 File Descriptors under /proc

� For process with ID <pid>, subdirectory /proc/<pid>/fd indicates its �le descriptors

• (Recall: <pid> is a number identifying a process)

• Entries are symbolic links pointing to real destination
In a dedicated subdirectory for each process under /proc, �le descriptors in use by the process are shown as so-called symbolic
links. You can think of a symbolic link as an additional name, which points to some �le or device.

On macOS, listing �le descriptors in this fashion does not work. As alternative, you can use a command to list open �les
shown in an earlier drawing.

• Use ls -l to see numbers and their destinations, e.g.:

lrwx------ 1 jens jens 64 Jun 26 15:34 0 -> /dev/pts/3

lrwx------ 1 jens jens 64 Jun 26 15:34 1 -> /dev/pts/3

lrwx------ 1 jens jens 64 Jun 26 15:34 2 -> /dev/pts/3

lr-x------ 1 jens jens 64 Jun 26 15:34 3 -> /dev/tty

lr-x------ 1 jens jens 64 Jun 26 15:34 4 -> /etc/passwd

• Use of /dev/pts/3 (a so-called pseudo-terminal, which represents user interaction with the command
line) for stdin, stdout, and stderr

• Access of �le /etc/passwd via �le descriptor 4

• (If you are curious: /dev/tty is mostly the same as /dev/pts/3 here)

E.g., here we see �ve �le descriptors used by some process, numbered from 0 to 4, where the symbolic link with the name 4

points to a �le passwd, which contains user information under GNU/Linux.

We also see that the standard �le descriptors all point to the same device, which represents user interactions with the command
line; details are not important here.

3.6.1 A Quiz

Take this quiz.

4 Access Rights

We now look at access rights on �les and other objects.

7

https://drawings.jvns.ca/pipes/
https://stackoverflow.com/questions/20974438/get-list-of-open-files-descriptors-in-os-x
https://superuser.com/questions/733458/do-dev-tty-and-current-dev-pts-x-are-the-same-things

4.1 Fundamentals of Access Rights

� Who is allowed to do what?

Access rights determine who is allowed to do what.

� System controls access to objects by subjects

• Object = whatever needs protection: e.g., region of memory, �le, service

• With di�erent operations depending on type of object

• Subject = active entity using objects: process

• Threads of process share same access rights
• Subject may also be object, e.g., terminate thread or process
With that goal, the OS controls accesses to objects by subjects. Here, objects can be of varied types, such as memory, �les,
or services, while subjects are processes. The threads of a process then share the access rights of a process.

• Subject acts on behalf of principal

• Principal = User or organizational unit
• Di�erent principals and subjects have di�erent access rights on di�erent objects

• Permissible operations

The process is created by some user, maybe as part of an organizational unit, who is called principal.

Importantly, di�erent principals and subjects have di�erent access rights on di�erent objects, where the access rights specify
what operations are permitted on a given object for a given subject.

As simple example, consider a document with tasks for the next written exam, created by a team of instructors on a multi-user
computer. Clearly, that team should be allowed to read and write the exam document, while students must not have any
permissions on that document at all. In contrast, students may be allowed to read documents of selected previous exams, but
not to modify them.

4.1.1 Typical Access Right Operations

� In general, dependent on object type, e.g.:

• Files

• Create, remove
• Read, write, append
• Execute
• Change ownership

For di�erent types of objects, di�erent operations are permitted or restricted by access rights. For example, on �les, operations
such as create, remove, read, write, append, execute, or change of ownership may be applicable.

• Access rights

• Copy/grant

Access rights themselves may also be considered as objects under access control. Thus, some subjects may be allowed to copy
access rights or to grant access rights to other subjects.

4.2 Representation of Access Rights

� Conceptual: Access (control) matrix

� Slices of access matrix

• Capabilities

• Access control lists

Access rights can be represented in di�erent ways, and we look at the examples listed here.

4.2.1 Access (Control) Matrix

� Matrix

• Principals and subjects as rows

• Objects as columns

• List of permitted operations in cell

An access matrix, or access control matrix, is a matrix of rows and columns, where the principals and subjects are listed in
separate rows, the objects in columns, and each cell contains a list of permitted operations.

8

4.2.2 Access Matrix: Transfer of Rights

� Transfer of rights from principal JDoe to process P_1

• Figure 7.12 (a) of (Hailperin 2019): copy rights

F_1 F_2 JDoe P_1 . . .
JDoe read write
P_1 read write
...

This small excerpt of an access matrix demonstrates the representation of access rights in general. John Doe and process 1 are
listed as principal and subject in separate rows, while objects are listed in columns. More speci�cally, the columns list two �les
and again principal John Doe and process 1.

Note that principal and process occur in column headers as well as row headers, indicating that they serve dual roles as objects
and subjects. Access right of process 1 (as subject) are indicated in the row for process 1. You see that the process is allowed
to read �le 1 and write �le 2. You also see that John Doe and process 1 share the same access rights.

Processes obtain their access rights from principals on whose behalf they are operating. For example, if you and me have got
user accounts on my machine and if both of us start the same text editor, then the two processes for these text editors will have
di�erent access rights, which are derived from our (users') access rights: Typically, you will be able to read and write your own
�les, while you should be unable to access my �les, and vice versa.

In this example, process 1 is working on behalf of principal John Doe, and the rights of John Doe were simply copied to process
1, when that process was created by John Doe.

• Figure 7.12 (b) of (Hailperin 2019): special right for transfer of rights

F_1 F_2 JDoe P_1 . . .
JDoe read write
P_1 use rights of
...

A second variant for the transfer of access rights might be used, which avoids copying lots of access rights. Towards that end,
a special operation may be used in the access matrix, which treats principals as objects. Here, you see that process 1 has the right
to �use rights of� John Doe. Consequently, when that process tries to access some object, the OS will check John Doe's rights.

As the access matrix can be large, it can be split by rows or by columns for simpli�ed management. We look at these variants
next.

4.2.3 Capabilities

� Capability ≈ reference to object with access rights

� Conceptually, capabilities arise by slicing the access matrix row-wise

• Principals have lists with capabilities (access rights) for objects

• Challenge: Tampering, theft, revocation

• Capabilities may contain cryptographic authentication codes

A capability enables to perform some operation on some object. It can be thought of as reference to the object with permitted
access rights.

Conceptually, capabilities arise by slicing the access matrix row-wise. Then, principals have lists with capabilities, or access
rights, for objects. When a principal wants to perform an operation on some object, the principal has to provide a matching
capability, which is checked by the OS.

The system needs to be secured against tempering or theft of capabilities, and it might also o�er revocation mechanisms for
capabilities. Towards those goals, capabilities are usually secured by cryptographic mechanisms. Details are beyond the scope of
our course.

4.2.4 Access Control Lists

� Access Control List (ACL) = List of access rights for subjects/principals attached to object

� Conceptually, ACLs arise by slicing the access matrix column-wise

• E.g., �le access rights in GNU/Linux and Windows (see Sec. 7.4.3 in (Hailperin 2019))

The access matrix can also be sliced column-wise to obtain a list of rights for subjects or principals on a given object. Such
a slice is also called access control list. Such lists are often used on �les to specify who is allowed to perform what operations, for
which we look at an example next.

9

4.2.5 File ACLs

� ls lists �les and directories

• With option -l in �long� form

• Shortened ACLs

• Permissions not for individual users; instead, separately for owner, group, other

• Owner: Initially, the creator; ownership can be transferred

• Group: Users can be grouped, e.g., to share �les for a joint project

• Other: Everybody else

• File type, followed by 3 triples with permissions

• File (-), directory (d), symbolic link (l), . . .

• Read (r), write (w), execute (x) (for directories, �execute� means �traverse�)

• Set user/group ID (s), sticky bit (t)

• ls -l /etc/shadow /usr/bin/passwd

• -rw-r----- 1 root shadow 2206 Jan 11 2024 /etc/shadow

• -rwsr-xr-x 1 root root 68208 Feb 6 13:49 /usr/bin/passwd*

• ls -ld /tmp

• drwxrwxrwt 14 root root 20480 Jun 8 13:20 /tmp

The command ls can display access control lists on �les in GNU/Linux. The long listings produced with option -l show
permissions in the form of three triples. The �rst triple speci�es what the �Owner� is allowed to do, the second one is for a �Group�,
the third one for �Others�.

In general, the owner is the user creating a �le, but ownership can also be transferred.
Users can also be grouped, e.g., to share �les for a joint project. Groups are created by the administrator, with a many-to-many

relationship between users and groups. Each �le is assigned to one group, and �les' groups can be changed by their owners.
If a user is neither the owner nor a member of the group for a �le, then �other� permissions apply.
In two ls outputs here, we see permissions for two �les, namely shadow and passwd, and for the standard temporary directory

/tmp.
Both �les are owned by root (in red), who is the default administrator on GNU/Linux. The �le shadow contains hashed user

passwords, and passwd is the command with which users can change their passwords. Clearly, users must not be able to change
passwords of other users (except for root who can do whatever she likes).

Let us look at the triples of permissions to see how this goal is achieved. The triples may contain letters to indicate read (r),
write (w), and execute (x) permissions, with hyphens indicating missing permissions.

First, the permissions for �le shadow can be interpreted as follows:
The owner triple (in red) speci�es that root is allowed to read and write but not to execute the �le. (As this �le just contains

data, execution does not make sense.)
Next, group members (in blue) are allowed to read but neither to write nor to execute. Here, the group is shadow, which is not

important for us. (See this hyperlink if you are interested.)
Finally, others (in green) do not have any permission.
Thus, only root can write to shadow (w is only present in red for the owner, while blue and green parts do not contain that

letter). So how can users change their own passwords, which requires updates of the �le shadow?
We see that everyone is allowed to read and execute passwd, which is the command that allows users to change their passwords.

Usually, when a user executes a command, the resulting process runs with the permissions of the executing user. Here, however,
we see an s for �set user ID� in red. With this permission, the OS will run the process for passwd with permissions of the �le's
owner, that is root. Thus, the process for passwd has write permissions of root on shadow. (Of course, passwd needs to make sure
that users only change their own passwords.)

In the directory /tmp, everybody is allowed to read and write. With the green so-called sticky bit t, users are only allowed to
delete their own �les, not those of other users.

4.2.6 Drawing on File ACLs

Warning! External �gure not included: �Unix permissions� © 2018 Julia Evans, all rights reserved from
julia's drawings. Displayed here with personal permission.
(See HTML presentation instead.)

This drawing visualizes the three triples of access control lists explained on the previous slide. It shows how numeric values can
be computed from individual bits for each permission. Such numeric values can then be used in commands to change permissions.
Alternatively, a symbolic variant is also available, as explained on the next slide.

4.2.7 File ACL Management

� Management of ACLs with chmod

• Read its manual page: man chmod

• (Default permissions for new �les are con�gurable)

• (Beyond class topics, see help umask in bash)

10

https://serverfault.com/questions/133229/what-is-the-shadow-group-used-for
https://drawings.jvns.ca/permissions/

� Permissions with bit pattern or symbolically

• Previous drawing illustrates bit patterns for r, w, x

• Symbolic speci�cations contain

• one of (among others) u, g, o for user, group, others, resp.,

• followed by + or - to add or remove a permission,

• followed by one of r, w, x, s, t (and more)

• E.g., chmod g+w file.txt adds write permissions for group members on file.txt

This slide instructs you to read the manual page for chmod, a command to �change� the �mode�, i.e., permission bits of a �le.
Thus, with chmod, users can manage the access control lists of �les.

As illustrated in the previous drawing, that command can set the permission bits for user, group, and others based on numeric
values.

In addition, a symbolic speci�cation for the bits of the triples is available as shown here: We can use plus and minus signs to
add and remove permissions on the di�erent triples. A speci�c example shows how to add write permissions for group members on
a sample �le. Try this out.

5 Conclusions

Let us conclude.

5.1 Summary

� Process as unit of management and protection

• Threads with address space and resources

• Including �le descriptors

• Isolation of virtual address spaces as protection mechanism

� File access abstracted via numeric �le descriptors as streams

• Redirection and pipelining for inter-process communication

� Access control restricts operations of principals via subjects on objects

• GNU/Linux �le permissions as example for ACLs

• Access control as additional OS protection mechanism

This presentation concludes the OS topics of our course.
The process is considered the fundamental unit of management and protection in operating systems. Each process has its own

separate address space and resources, including �le descriptors. Threads of a process share that address space and resources, and
they form the units for scheduling.

The OS isolates the address spaces of di�erent processes from each other, which prevents unauthorized access or manipulation
of data belonging to one process by other processes. In addition, it also protects data structures of the OS itself.

File descriptors serve to abstract �le access, allowing processes to interact with �les using numerical identi�ers instead of
physical locations. This abstraction enables powerful features such as redirection and pipelining, which can be used for inter-
process communication.

Many OSs implement access controls on objects such as �les. These controls restrict certain operations by principals acting
through subjects. For instance, �le permissions are enforced through access control lists that determine what actions individual
users and their processes may perform on speci�c �les. With these settings, administrators and users can help prevent unwanted
modi�cations or disclosures of sensitive information.

5.2 Perspective

� Di�erent access control paradigms exist

• Discretionary access control (DAC)

• Owner grants privileges

• E.g., �le systems, seen above

• Mandatory access control (MAC)

• Rules/policies about properties of principals, processes, resources de�ne permitted operations

• E.g., SELinux, AppArmor

• More complex to manage/use but �more secure�

• Role based access control (RBAC)

11

https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://en.wikipedia.org/wiki/AppArmor

• Permissions for tasks bound to organizational roles

• E.g., di�erent rights for students and teachers in Learnweb

Beyond what you saw in this presentation, di�erent access control paradigms exist. File permissions, as presented above, fall
under discretionary access control. Here, the owner of a resource needs to de�ne access restrictions or to grant privileges. As users
are typically lazy and as their options are limited, this approach is error-prone.

More secure systems rely on mandatory access control, MAC for short, e.g., with SELinux. Here, a set of policies de�nes who is
allowed to do what. E.g., the root user is not allowed to do everything any longer. Also, processes started by a user do not inherit
user permissions any more, but can be limited, e.g., in terms of permissions on �les and directories or regarding network access.
Then, if an exploitable security �aw exists in software, it will still be restricted by MAC.

Finally, access control is often tied to roles instead of individual users. E.g., in Learnweb, di�erent roles such as guest, student,
and lecturer exist, which come with di�erent privileges, which no longer need to be con�gured for individual users. Thus, privilege
management is simpli�ed, but other aspects of access control explained in this presentation are not a�ected.

5.3 Maybe in-class: Safety vs Security

� Selected pointers

• Safety: Protection against unintended/natural/random events

• Requires proper management, involves training, redundancy (e.g., hardware, backups), and insurances

• Security: Protection against deliberate attacks/threats

• Protection of security goals for objects and services against attackers

• Security goals and risk

• CIA triad with classical goals: Con�dentiality, Integrity, Availability

• Many more, e.g., accountability, anonymity, authenticity, (non-) deniability

• E.g.: Processes on �your� system?

• Advanced persistent threats (APTs), rootkits

• Check externally, e.g., German Desinfec't

• Design processes and management

• E.g., BSI in Germany and ISO standards: IT-Grundschutz

This slide highlights general concepts of security and safety in IT systems, which are not covered in this course. They might
be discussed brie�y in class, and the module �Security in Distributed Systems� addresses such topics in detail.

Every IT system needs to be protected against failures or other negative consequences that arise from unintended events, which
concerns the safety of the system, and deliberated attacks, which concerns security.

In organizational settings, safety and security require design processes and proper management, for which national and inter-
national standards with recommendations and best practices exist.

You may want your own systems to be safe and secure as well. Then, probably most importantly, create backups, and make
sure that you can restore them. Afterwards, check out terms such as advanced persistent threats and rootkits.

In our Bachelor's program, a separate module addresses information security in the context of distributed systems.

Bibliography

Hailperin, Max. 2019. Operating Systems and Middleware � Supporting Controlled Interaction. revised edi-
tion 1.3.1. https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-

Controlled-Interaction.
The bibliography contains references used in this presentation.

License Information

Source �les are available on GitLab (check out embedded submodules) under free licenses. Icons of custom
controls are by @fontawesome, released under CC BY 4.0.

Except where otherwise noted, the work �Processes�, © 2017-2026 Jens Lechtenbörger, is published under
the Creative Commons license CC BY-SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting license terms.
Source �les are available on GitLab, where the author would be happy about contributions, e.g., in terms of issues and merge

requests.

12

https://en.wikipedia.org/wiki/Advanced_persistent_threat
https://en.wikipedia.org/wiki/Rootkit
https://de.wikipedia.org/wiki/Desinfec%E2%80%99t
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/IT-Grundschutz/it-grundschutz_node.html
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Core Questions
	Learning Objectives
	Retrieval practice
	Previously on OS …
	Quiz 1
	Quiz 2
	Quiz 3

	Processes
	Processes
	Process Creation
	Bash as Command Line

	Process Control Block
	Seeing Processes and Threads on Linux

	File Descriptors
	File Descriptors
	Drawing on File Descriptors
	Files/Streams for IPC
	Redirection of Streams
	Streams for IPC
	Drawing on Pipes

	File Descriptors under /proc
	A Quiz

	Access Rights
	Fundamentals of Access Rights
	Typical Access Right Operations

	Representation of Access Rights
	Access (Control) Matrix
	Access Matrix: Transfer of Rights
	Capabilities
	Access Control Lists
	File ACLs
	Drawing on File ACLs
	File ACL Management

	Conclusions
	Summary
	Perspective
	Maybe in-class: Safety vs Security

