

Virtual Memory with Linux¹²

IT Systems, Summer Term 2026

Dr. Matthes Elstermann

1 Looking at Memory with Linux

(Specifics of Linux are not part of learning objectives. However, the following illustrates shared memory, and the pseudo-filesystem `/proc` will be revisited in other presentations.)

1.1 Linux Kernel: `/proc/<pid>/`

- `/proc` is a pseudo-filesystem
 - See <https://man7.org/linux/man-pages/man5/proc.5.html>
 - (Specific to Linux kernel; incomplete or missing elsewhere)
 - “Pseudo”: Look and feel of any other filesystem
 - Subdirectories and files
 - However, files are no “real” files but meta-data
- Interface to internal **kernel data structures**
 - One subdirectory per process ID
 - OS identifies process by integer number
 - Here and elsewhere, `<pid>` is meant as **placeholder** for such a number

1.1.1 Video about `/proc`

This video, “Looking at `/proc`” by Jens Lechtenbörger, shares the presentation’s license terms, namely CC BY-SA 4.0.

The video shows some aspects of the `/proc` filesystem related to memory management, which are described in more abstract form on subsequent slides.

1.1.2 Drawing about `/proc`

Warning! External figure **not** included: “`/proc`” © 2018 Julia Evans, all rights reserved from julia’s drawings. Displayed here with personal permission.
(See HTML presentation instead.)

1.1.3 Drawing about man pages

Warning! External figure **not** included: “Man pages are amazing” © 2016 Julia Evans, all rights reserved from julia’s drawings. Displayed here with personal permission.
(See HTML presentation instead.)

1.2 Linux Kernel Memory Interface

- Memory allocation (and much more) visible under `/proc/<pid>`
- E.g.:
 - `/proc/<pid>/pagemap`: One 64-bit value per virtual page
 - Mapping to RAM or swap area
 - `/proc/<pid>/maps`: Mapped memory regions
 - `/proc/<pid>/smaps`: Memory usage for mapped regions
- Notice: Memory regions include **shared** libraries that are used by lots of processes

¹This PDF document is an inferior version of an OER in HTML format; free/libre Org mode source repository.

²Material created by Jens Lechtenbörger; see end of document for license information.

1.3 GNU/Linux Reporting: smem

- User space tool to read `smaps` files: `smem`
 - See Blog post
- Terminology
 - **Virtual set size (VSS):** Size of virtual address space
 - **Resident set size (RSS):** Allocated main memory
 - Standard notion, yet overestimates memory usage as lots of memory is shared between processes
 - Shared memory is added to the RSS of every sharing process
 - **Unique set size (USS):** memory allocated exclusively to process
 - That much would be returned upon process' termination
 - **Proportional set size (PSS):** USS plus "fair share" of shared pages
 - If page shared by 5 processes, each gets a fifth of a page added to its PSS

1.3.1 Sample smem Output

```
$ smem -c "pid command uss pss rss vss" -P "bash|xinit|emacs"
  PID Command          USS      PSS      RSS      VSS
  765 /usr/bin/xinit /etc/X11/Xse    220     285    2084   15952
1390 /bin/bash -c libreoffice5.3    240     510    2936   13188
  826 /bin/bash /usr/bin/qubes-se    256     524    3008   13204
  750 -su -c /usr/bin/xinit /etc/    316     587    3368   21636
1251 bash                  4864    5136    7900   26024
2288 /usr/bin/python /usr/bin/sm    5272    6035    9432   24688
  1145 emacs                90876   93224   106568  662768
```

1.3.2 Sample smem Graph

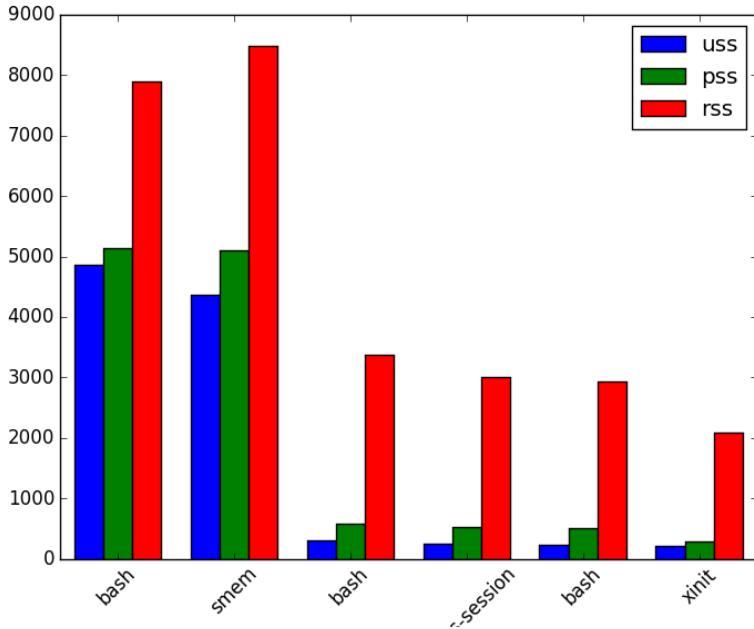


Figure 1: `smem --bar pid -c "uss pss rss" -P "bash|xinit"` ("Screenshot of smem" under CC0 1.0; from GitLab)

License Information

Source files are available on GitLab (check out embedded submodules) under free licenses. Icons of custom controls are by @fontawesome, released under CC BY 4.0.

Except where otherwise noted, the work “Virtual Memory with Linux”, © 2017-2022, 2024-2025 Jens Lechternbörger, is published under the Creative Commons license CC BY-SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting license terms.

Source files are available on GitLab, where the author would be happy about contributions, e.g., in terms of issues and merge requests.