
MX Challenges 12

IT Systems, Summer Term 2026

Dr. Matthes Elstermann

The topic of mutual exclusion is explained in three presentations, of which this is the third one.

1 Introduction

� Part 1

• Introduction

• Race Conditions

• Critical Sections and Mutual Exclusion

• Locking

• Pointers beyond class topics

� Part 2

• Monitors

• MX with Monitors in Java

• Cooperation with Monitors in Java

� Part 3

• Deadlocks

• Deadlock Strategies

• Further Challenges

• Conclusions

Now that we know general concepts for MX and their use in Java, let us investigate arising challenges.
The major part of this presentation concerns deadlocks, followed by further challenges, in particular starvation.

2 Deadlocks

� Did you play level �Deadlock� at https://deadlockempire.github.io/?

Figure 1: �Logo for Deadlock Empire� under GPLv2; from GitHub

• There, you lead two threads into a deadlock. . .

Let us investigate deadlocks.
Previously, you were instructed to experience a deadlock in the Deadlock Empire. Recall this task.

1This PDF document is an inferior version of an OER in HTML format; free/libre Org mode source repository.
2Material created by Jens Lechtenbörger; see end of document for license information.

1

https://deadlockempire.github.io/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://github.com/deadlockempire/deadlockempire.github.io/blob/devel/img/logo.png
https://oer.gitlab.io/oer-courses/it-systems/14-OS-MX-III-Challenges.html
https://gitlab.com/oer/oer-courses/it-systems

2.1 Deadlock

� Permanent blocking of thread set

Figure 2: �Gridlock� by Interiot~commonswiki and Jeanacoa under CC BY-SA 2.5 Generic; from Wikimedia
Commons

• Reason

• Cyclic waiting for resources/locks/messages of other threads

• (Formal de�nition on later slide)

A deadlock is a programming bug, which leads to multiple threads being stuck: In essence, the threads mutually wait for
something from other threads which never arrives.

To get a feeling for deadlocks, note that some tra�c situations can be interpreted as deadlocks. First, the image here shows a
tra�c situation where no car can move because other cars (namely, the red ones) block required street segments. In OS terms,
the cars can be interpreted as threads, which are stuck, while street segments represent shared resources under MX that are
exclusively owned by some threads while others also need them. This is an instance of cyclic waiting.

As a di�erent example, consider priority to the right and a street crossing where four cars arrive from all four directions. Under
�priority to the right�, each driver needs to wait for another car to move �rst. Thus, neither can move, all are stuck.

� No generally accepted solution

• Deadlocks can be perceived as programming bugs

• Dealing with deadlocks causes overhead

• Acceptable to deal with (hopefully rare) bugs?

• Solutions depend on

• Properties of resources (e.g., linearly ordered ones)

• Properties of threads (transactions?)

In programming, we aim to avoid problematic algorithms or rules such a �priority to the right� so that deadlocks do not occur.
However, there is no generally accepted solution, and you need to be particularly careful when using MX mechanisms.

As you will see, OSs typically ignore deadlocks, which is justi�ed by the reasoning that programmers should avoid this type of
bug; thus, there is no need to add additional complexity and overhead to the OS. Moreover, solutions also depend on the type of
resources, e.g., you will see a strategy for linearly ordered resources later on.

As a side note, database systems may involve deadlock detection for transactions, which can be aborted to undo their e�ects,
while this is less simple for threads in OSs. Thus, thread properties also play a role in deadlock considerations.

2.2 Deadlock Example

� Money transfers between bank accounts

• Transfer from myAccount to yourAccount by thread 1; transfer in other direction by thread 2

This slide introduces deadlocks based on a programming example with MX.
Consider multiple transfers of money between bank accounts, where each transfer is managed by a separate thread.

� Race conditions on account balances

� Need mutex per account

• Lock both accounts involved in transfer. What order?

2

https://commons.wikimedia.org/wiki/File:Gridlock.svg#filehistory
https://creativecommons.org/licenses/by-sa/2.5/
https://commons.wikimedia.org/wiki/File:Gridlock.svg
https://commons.wikimedia.org/wiki/File:Gridlock.svg
https://en.wikipedia.org/wiki/Priority_to_the_right

Clearly, account balances are shared resources, on which race conditions may arise, e.g., leading to lost updates.
Thus, MX mechanisms are necessary, say locking. In what order should each thread lock its two accounts?

� �Natural� lock order: First, lock source account; then, lock destination account

• Thread 1 locks myAccount, while thread 2 locks yourAccount

• Each thread gets blocked once it attempts to acquire the second lock

• Neither can continue

• Deadlock

If the programmer implements a natural lock order where the lock for the source account is acquired �rst, followed by the lock
for the target account, then two transfers in opposite directions can lead to a deadlock as stated here:

Each thread obtains just the lock for its source account, which is the target account for the other account. Thus, both threads
are blocked when attempting to acquire their second lock.

2.3 De�ning Conditions for Deadlocks

Deadlock if and only if (1) � (4) hold (Co�man, Elphick, and Shoshani 1971):

1. Mutual exclusion

� Exclusive resource usage

2. Hold and wait

� Threads hold some resources while waiting for others

3. No preemption

� OS does not forcibly remove allocated resources

4. Circular wait

� Circular chain of threads such that each thread holds resources that are requested by next thread in chain

As stated on this slide, a deadlock exists precisely when four conditions hold:
First, resources are used under MX.
Second, the threads involved in the deadlock hold some resources while waiting for others.
Third, the OS does not forcibly remove allocated resources.
Fourth, the threads can be arranged in a circular chain such that each thread holds resources for which the next thread in the

chain waits.
In the deadlock example about money transfers above, we have two threads and two accounts protected by locks. The four

conditions hold as follows: First, accounts are locked exclusively.
Second, each thread holds one lock while waiting for a second lock.
Third, locks are never removed by the OS. Instead, threads may release them.
Fourth, both threads wait for each other.

2.4 Resource Allocation Graphs

� Representation and visualization of resource allocation as directed graph

• (Necessary prior knowledge: directed graphs and cycles)

• Nodes

Figure 3: �Figure 4.22 of (Hailperin 2019)� by Max Hailperin under CC BY-SA 3.0; converted from GitHub

3

https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0422.pdf

• Threads (squares)

• Resources (circles)

• (Choice of shapes is arbitrary, just for visualization purposes)

• Edges

• From thread T to resource R if T is waiting for R

• From resource R to thread T if R is allocated to T

• Fact: System in deadlock if and only if graph contains cycle

A resource allocation graph is a directed graph that visualizes the current state of resource allocations and of outstanding
requests by threads. Threads and resources are nodes in this graph, and there are two types of edges:

First, there is an edge from a thread to a resource if the thread is waiting for the resource (because the resource is currently
allocated to another thread).

Second, there is an edge from a resource to a thread if the resource is allocated to that thread.
Importantly, a cycle in this graph represents the circular wait condition of a deadlock. Thus, if a cycle exists, a deadlock exists.

All threads on that cycle are involved in this deadlock.
Here you see a resource allocation graph for the previous deadlock example involving bank transfers.

3 Deadlock Strategies

� (Ostrich �Algorithm�)

� Deadlock Prevention

� Deadlock Avoidance

� Deadlock Detection

Di�erent deadlock strategies are employed in di�erent types of systems. We consider the four strategies shown here.

3.1 Ostrich �Algorithm�

� A joke about missing deadlock handling

• �Implemented� in most systems

• Pretend nothing special is happening

• (E.g., Java acts like ostrich)

• Reasoning

• Proper deadlock handling is complex

• Deadlocks are rare, result from buggy programs

Figure 4: Drawing created by Adrian Lison for bonus
task in summer term 2017; released into Public Do-
main; other excellent drawings.

The so-called ostrich �algorithm� is visualized here, in di�erent variants if you refresh the HTML page.
This is not an algorithm but a joke about missing deadlock handling in most OSs. They do not care about deadlocks, but

pretend that nothing bad is happening, keeping the blocked threads in a deadlock forever.
The reason to use this strategy is that proper deadlock handling is a complex topic, while deadlocks in OSs result from buggy

programs. Thus, programmers should �x their programs, instead of adding the overhead for proper handling of deadlocks to OSs.

4

https://gitlab.com/oer/figures/tree/main/OS/ostriches

3.2 Deadlock Prevention

� Prevent a de�ning condition for deadlocks from becoming true

� Practical options

A strategy for deadlocks is called prevention strategy if it prevents deadlocks from happening by making sure that one of the
four de�ning deadlock conditions can never become true. Although there are four conditions, only two of them are used for
practical purposes, and they are explained in the subsequent bullet points.

• Prevent condition (2), �hold and wait�: Request all necessary resources at once

• Only possible in special cases, e.g., conservative/static 2PL in DBMS

• Threads either have no incoming or no outgoing edges in resource allocation graph → Cycles cannot
occur

Some systems may prevent the hold-and-wait-condition from becoming true. One example are database systems with variants
of the two-phase locking protocol, where transactions either acquire all resources they need, or none at all. Clearly, such
transactions either hold or wait, preventing cycles in resource allocation graphs.

• Prevent condition (4), �circular wait�: Number resources, request resources according to linear resource
ordering

• Consider resources R_h and R_k with h < k

• Threads that need both resources must lock R_h �rst

• Threads that already requested R_k do not request R_h afterwards

• Requests for resources in ascending order → Cycles cannot occur

For programmers, preventing the circular-wait-condition is a usual choice. This is possible if resources can be numbered
linearly. If a thread needs multiple resources, it acquires them according to their linear order.

Then, edges in resource allocation graphs can never �go back�, which would be necessary to close cycles.

3.2.1 Linear Resource Ordering Example

� Money transfers between bank accounts revisited

� Locks acquired in order of account numbers

• A programming contract, not known by OS

• Suppose myAccount has number 42, yourAccount is 4711

• Both threads try to lock myAccount �rst (as 42 < 4711)

• Only one succeeds, can also lock yourAccount

• The other thread gets blocked

• No deadlock

� (See Fig 4.21 in (Hailperin 2019) for an example of linear ordering in the context of the Linux scheduler)

In the context of transfers among bank accounts, each thread could just lock the account with the smaller number �rst. Then,
no deadlocks arise.

Note that this strategy just requires a programming contract, to be followed by all programmers using the shared resources.
The OS can then use the ostrich �algorithm�.

3.3 Deadlock Avoidance

� (See stackexchange for di�erence between prevent and avoid)

A strategy for deadlocks is called avoidance strategy if it avoids deadlocks. See the hyperlink here for the di�erence between
the words �prevent� and �avoid� if you are not sure about their di�erence.

Avoidance does not rule out any speci�c of the four de�ning deadlock conditions, but it still makes sure that deadlocks do not
happen.

� Dynamic decision whether allocation may lead to deadlock

• If a deadlock cannot be ruled out easily: Do not perform that allocation but block the requesting thread
(or return error code or raise exception)

• Consequently, deadlocks do never occur; they are avoided

The typical approach is to analyze resource requests by threads. If some deadlock avoidance algorithm is able to rule out a
deadlock for the resulting state, the request will be granted. If the algorithm is not able to rule out deadlocks, the request will
not be granted. Note that such algorithms generally err on the safe side. Thus, some requests might not be granted, although
they would not cause any deadlock; the OS might be unable to detect this, though.

5

https://en.wikipedia.org/wiki/Two-phase_locking#Conservative_two-phase_locking
https://ell.stackexchange.com/questions/52710/the-difference-between-prevent-and-avoid

� Classical technique

• Banker's algorithm by Dijkstra

• Deny incremental allocation if �unsafe� state would arise

• Not used in practice

• Resources and threads' requirements need to be declared ahead of time

A famous deadlock avoidance technique is Dijkstra's banker's algorithm, which has quite restrictive preconditions and is therefore
not used in practice.

3.4 Deadlock Detection

� Idea

• Let deadlocks happen

• Detect deadlocks, e.g., via cycle-check on resource allocation graph

• Periodically or

• After �unreasonably long� waiting time for lock or

• Immediately when thread tries to acquire a locked mutex

• Resolve deadlocks: typically, terminate some thread(s)

The �nal strategy for dealing with deadlocks is deadlock detection. Here, the system does not take special precautions to avoid or
prevent deadlocks but lets them happen. To deal with deadlocks, they are detected, for example based on cycle checks on resource
allocation graphs, and then resolved. Detection may take place periodically or after waiting times or even immediately upon
resource requests; the latter actually prevents cyclic wait conditions, moving from deadlock detection to deadlock prevention.

To resolve deadlocks, the OS typically terminates some threads until no cycle exists any longer, and various strategies exist to
select victim threads, which is beyond our topics.

� Prerequisite to build graph

• Mutex records by which thread it is locked (if any)

• OS records for what mutex a thread is waiting

Clearly, the OS needs to build suitable data structures for deadlock detection, in case of resource allocation graphs, each mutex
can easily record by which thread it is locked, while the OS also keeps track of what threads are waiting for what mutexes.

4 Further Challenges

Let us brie�y look at additional challenges.

4.1 Starvation

� A thread starves if its resource requests are repeatedly denied

� Examples in previous presentations

• Interrupt livelock

• Thread with low priority in presence of high priority threads

• Thread which cannot enter CS

• Famous illustration: Dining philosophers (next slide)

• No simple solutions

The term starvation occurred on several occasions already, where threads could not continue their execution as expected but
were preempted or blocked frequently or for prolonged periods of time. When locking is involved, avoidance of starvation is a hard
problem without simple solutions as illustrated next with the famous example of dining philosophers.

6

https://en.wikipedia.org/wiki/Banker's_algorithm

4.1.1 Dining Philosophers

� MX problem proposed by Dijkstra

� Philosophers sit in circle; eat and think repeatedly

• Two forks required for eating

• MX for forks

Figure 5: Dining Philosophers (�Figure 4.20 of (Hailperin 2019)� by Max Hailperin under CC BY-SA 3.0;
converted from GitHub)

A famous illustration of starvation, which alludes to the literal meaning of the word, goes back to Dijkstra. Here, philosophers
need forks to eat, and forks are protected by some MX mechanism. If the underlying algorithm to protect and reassign forks does
not prevent starvation, one or more philosophers may die from hunger as they do not receive forks frequently enough.

Lots of textbooks on OS include algorithms for the dining philosophers to explain MX, deadlocks, and starvation. The next
slide points out the di�culty of associated challenges.

4.1.2 Starving Philosophers

� Starvation of P0

7

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0420.pdf

Figure 6: �Figure 4.20 of (Hailperin 2019)� by Max Hailperin under CC BY-SA 3.0; converted from GitHub

• P1 and P3 or P2 and P4 eat in parallel

• Then they wake the other pair

• P1 wakes P2; P3 wakes P4

• P2 wakes P1; P4 wakes P3

• Iterate

• (Above sequence possible for algorithm in (Tanenbaum 2001); inspired by exercise in (Stallings 2001))

The sequence of events shown here is possible for a textbook algorithm on the dining philosophers. In this case, philosopher
0 starves as the other four philosophers form stable pairs. The philosophers in these pairs wake up each other, but nobody ever
wakes up philosopher 0.

Note that such cases of starvation do not necessarily arise for executions in practice. The point is that the textbook algorithm
does not rule out such executions.

Apparently, addressing starvation is no simple task.

5 Conclusions

Let us conclude.

5.1 Priority Inversion Example

� Mars Path�nder, 1997; Wikipedia o�ers details

• Robotic spacecraft named Path�nder

8

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0420.pdf
https://en.wikipedia.org/wiki/Mars_Pathfinder

Figure 7: �Sojourner Rover� by NASA under Public domain; from Wikimedia Commons

• With rover named Sojourner (shown to right)

• A �low-cost� mission at $280 million

� Bug (priority inversion) caused repeated resets

• �found in pre�ight testing but was deemed a glitch and therefore given a low priority as it only occurred
in certain unanticipated heavy-load conditions�

� Priority inversion had been known for a long time

• E.g.: (Lampson and Redell 1980)

As mentioned for the Linux Futex, priority inversion may arise when threads with di�erent priorities share resources.
This slide points to the Mars Path�nder mission as famous example for the occurrence of priority inversion, which almost led

to a failure of the mission.
Please take a look at the bullet points.
Thus, to repeat: When you program threads of di�erent priorities that share resources, youmust learn about priority inversion.

Simple counter-measures are available. You just have to use them.

5.2 Summary

� Concurrent access to resources leads to races

� Mutual exclusion for critical section prevents races

• Locks, monitors

• Keyword synchronized in Java

• Cooperation via wait() and notify()

� Challenges such as deadlocks, starvation, priority inversion

To sum up, concurrent access to shared resources leads to race conditions, and mutual exclusion for critical sections can prevent
them. Locks and monitors are typical MX mechanisms, with support by the OS. In particular, Java implements the monitor concept
with the keyword synchronized for MX of CSs, and the methods wait() and notify() for cooperation.

As programmers, we need to be aware of challenges such as deadlocks, starvation, and priority inversion.

Bibliography

Co�man, E. G., M. Elphick, and A. Shoshani. 1971. �System Deadlocks.� Acm Comput. Surv. 3 (2): 67�78.
https://doi.org/10.1145/356586.356588.

Hailperin, Max. 2019. Operating Systems and Middleware � Supporting Controlled Interaction. revised edi-
tion 1.3.1. https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-

Controlled-Interaction.

9

https://www.nasa.gov/
https://commons.wikimedia.org/wiki/Template:PD-USGov
https://commons.wikimedia.org/wiki/File:Sojourner_on_Mars_PIA01122.jpg
https://doi.org/10.1145/356586.356588
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction

Lampson, Butler W., and David D. Redell. 1980. �Experience with Processes and Monitors in Mesa.� Commun.

Acm 23 (2): 105�17. https://doi.org/10.1145/358818.358824.
Stallings, William. 2001. Operating Systems: Internals and Design Principles. 4th ed. Prentice Hall.
Tanenbaum, Andrew S. 2001. Modern Operating Systems. 2nd ed. Prentice-Hall.

The bibliography contains references used in this presentation.

License Information

Source �les are available on GitLab (check out embedded submodules) under free licenses. Icons of custom
controls are by @fontawesome, released under CC BY 4.0.

Except where otherwise noted, the work �MX Challenges�, © 2017-2026 Jens Lechtenbörger, is published
under the Creative Commons license CC BY-SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting license terms.
Source �les are available on GitLab, where the author would be happy about contributions, e.g., in terms of issues and merge

requests.

10

https://doi.org/10.1145/358818.358824
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Deadlocks
	Deadlock
	Deadlock Example
	Defining Conditions for Deadlocks
	Resource Allocation Graphs

	Deadlock Strategies
	Ostrich “Algorithm”
	Deadlock Prevention
	Linear Resource Ordering Example

	Deadlock Avoidance
	Deadlock Detection

	Further Challenges
	Starvation
	Dining Philosophers
	Starving Philosophers

	Conclusions
	Priority Inversion Example
	Summary

