
MX in Java 12

IT Systems, Summer Term 2026

Dr. Matthes Elstermann

The topic of mutual exclusion is explained in three presentations, of which this is the second one.

1 Introduction

� Part 1

• Introduction

• Race Conditions

• Critical Sections and Mutual Exclusion

• Locking

• Pointers beyond class topics

� Part 2

• Monitors

• MX with Monitors in Java

• Cooperation with Monitors in Java

� Part 3

• Deadlocks

• Deadlock Strategies

• Further Challenges

• Conclusions

Based on the concepts introduced in the �rst part, we now look at monitors in general and their implementation in Java in
particular. Concerning Java, we �rst see how to guarantee MX with monitors, before we look at an example for cooperation with
monitors.

1.1 Thread Terminology

Take this quiz.

1.2 Thread States

Take this quiz.

1.3 Java Threads

Take this quiz.

1.4 Races

Take this quiz.

1.5 Mutual Exclusion

Take this quiz.

1This PDF document is an inferior version of an OER in HTML format; free/libre Org mode source repository.
2Material created by Jens Lechtenbörger; see end of document for license information.

1

https://oer.gitlab.io/oer-courses/it-systems/14-OS-MX-II-Java.html
https://gitlab.com/oer/oer-courses/it-systems


1.6 The Deadlock Empire, Part 2

� Continue playing Deadlock Empire

Figure 1: �Logo for Deadlock Empire� under GPLv2; from GitHub

� Play �Insu�cent Lock� and �Deadlock� at https://deadlockempire.github.io/

• Monitor in game is just a lock, which is locked with enter() and unlocked with exit()

• Di�erently from general monitor concept (and Java implementation) introduced subsequently

Continue with some levels of Deadlock Empire.
Beware though! What is called �Monitor� in the Game, is not the same as the Monitor concept introduced next and implemented

in Java. The Monitor in the game is essentially used like a lock.

2 Monitors

The monitor concept o�ers a fundamental MX mechanism.

2.1 Monitor Idea

� Monitor ≈ instance of class with methods and attributes

� Equip every object (= class instance) with a lock

• Automatically

• Call lock() when method is entered

• As usual: Thread is blocked if lock is already locked

• Thus, automatic MX

• We say that executing thread entered the monitor or executes inside the monitor when it has
passed lock() and executes a method

• Call unlock() when method is left

• Thread leaves the monitor

The basic idea of monitors is as follows: Think of a monitor as a special class, whose instances are automatically protected
with their own locks. The run-time system ensures that before a method is executed on such a monitor instance, the lock for that
instance needs to be acquired.

We say that a thread that has successfully executed lock(), �entered the monitor� or �executes inside the monitor�.
Thus, monitors automatically provide mutual exclusion for methods of the monitor class: If multiple threads share the same

object (with a potential for race conditions), only one of them can execute inside the monitor at any point in time, while others
are blocked.

Importantly, each object has its own lock. Thus, two threads that operate on di�erent class instances can both acquire their
di�erent locks and execute the same monitor method in parallel (without the danger of races as they do not share resources).
Thus, to explicitly point out a frequent misunderstanding: Methods are not locked; instead, objects are protected with locks.
Then, a thread may be blocked when it attempts to execute a method that requires access to an already locked object.

The next slide explains the origin of monitors in terms of an abstract data type (instead of the more modern �class� formulation
presented here). On that slide, you also see that monitors not only guarantee MX; in addition, they provide methods for cooperation
of threads.

Subsequent slides then discuss how the monitor concept is implemented in Java with the keyword synchronized (which activates
locking of the this object as explained here in general terms) and methods for cooperation.

2.2 Monitor Origin

� Monitors proposed by Hoare; 1974

� Abstract data type with MX guarantee

Monitors were proposed decades ago by famous computer scientist Tony Hoare. You may also know him as developer of quicksort.

Monitors can be understood as abstract data type that guarantees MX.

2

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://github.com/deadlockempire/deadlockempire.github.io/blob/devel/img/logo.png
https://deadlockempire.github.io/
https://en.wikipedia.org/wiki/Tony_Hoare


• Methods encapsulate local variables

• Just like methods in Java classes

Importantly, just as with object-oriented programming, monitors encapsulate local variables as embedded data. Thus, all
accesses to embedded data require method invocations.

• Thread enters monitor via method

• Built-in MX: At most one thread in monitor

Threads executing monitor methods automatically try to acquire a lock for the embedded data. As only one thread can own
the lock, monitor methods guarantee MX. As stated on the previous slide, we say that the successful thread �enters� the
monitor. While one thread executes inside the monitor, other threads are blocked when they attempt to enter as well.

• In addition: Methods for cooperation

• cwait(x): Blocks calling thread until csignal(x)

• Monitor free then

• csignal(x): Starts at most one thread waiting for x

• If existing; otherwise, nothing happens

In addition to MX, monitors also o�er methods that are meant for cooperation among threads. Here, a thread may �nd that
it cannot continue before some other thread changed the state of the execution. Then, the �rst thread may call a wait method,
which blocks it until some other thread sends a matching signal.

We will see an example in Java shortly.

3 MX with Monitors in Java

Let us see how to use monitors for MX in Java.

3.1 Monitors in Java: Overview

� In Java, classes and objects come with built-in locks

• Which are ignored by default

You may be surprised to learn that in Java, classes and objects come with built-in locks. However, those locks are ignored by
default.

� Keyword synchronized activates locks

• Automatic locking of this object during execution of method

• Automatic MX for method's body

• Useful if (large part of) body is a CS

To activate those locks, the keyword synchronized is necessary. If you declare a method to be synchronized, a thread
entering such a method automatically attempts to acquire the lock for the method's this object. Thus, based on usual locking
functionality, MX is guaranteed for the object accessed in the method's body: The �rst thread acquires the lock for the
duration of the method, while subsequent threads get blocked when they try to acquire the same lock.

This approach is particularly useful if a large part of the method is a critical section.

• E.g., for sample code from (Hailperin 2019) (for which you found races previously):

public synchronized void sell() {

if (seatsRemaining > 0) {

dispenseTicket();

seatsRemaining = seatsRemaining - 1;

} else displaySorrySoldOut();

}

E.g., for the ticket selling code, we can simply declare sell() to be a synchronized method, as shown here. Then, MX is
guaranteed, and races around seatsRemaining no longer occur.

3



3.1.1 Java, synchronized, this

� Java basics, hopefully clear

• Method sell() from previous slides invoked on some object, say theater

• Each theater has its own attribute seatsRemaining

• seatsRemaining is really this.seatsRemaining, which is the same as theater.seatsRemaining

• Inside the method, the name theater is unknown, theater is the this object, which is used implicitly

� Without synchronized, races arise when two threads invoke sell() on the same object theater

• With synchronized, only one of the threads obtains the lock on theater, so races are prevented

This slide lists basic facts about the code on the previous slide. Please think about them.
Ask if necessary.

3.1.2 Possible Sources of Confusion

� With synchronized, locks for objects are activated

• For synchronized methods, thread needs to acquire lock for this object

To sum up, with synchronized, locks for objects are activated. When executing a synchronized method, the thread needs to
acquire the lock for the this object. This procedure turns the method into a critical section with MX for the this object.

� Methods cannot be locked

Note, again, that methods are not locked.

� Individual attributes of the this object (e.g., seatsRemaining) are not locked

• (Which is not a problem as object-orientation recommends to encapsulate attributes, i.e., they cannot be
accessed directly but only through synchronized methods)

Also, a lock for the this object is acquired. However, individual attributes of that object are not locked. If accesses to attributes
are encapsulated by methods, as they should be, this does not pose a problem for MX.

3.1.3 Self-Study Task

1. Inspect and understand, compile, and run this sample program, which embeds the code to sell tickets, for
which you found races previously.

2. Change sell() to use the monitor concept, recompile, and run again. Observe the expected outcome.

(Nothing to submit here; maybe ask questions online.)
Please convince yourself that synchronized is all you need to prevent races for the ticket selling code.

3.2 Java Monitors in Detail

� MX based on monitor concept

• See Java speci�cation if you are interested in details

Java implements the monitor concept, with details speci�ed at the URL given here.

� Every Java object (and class) comes with

• Monitor with lock (not activated by default)

• Keyword synchronized activates lock

In essence, MX with Java is quite simple, as every Java object is equipped with a lock. By default, however, these locks are
not used. Instead, you need to use the keyword synchronized if you want threads to acquire the locks for MX.

• For method: public synchronized methodAsCS(...) {...}

• First thread acquires lock for this object upon call (Class object for static methods)

• Further threads get blocked
The simplest way to enforce MX is to declare methods operating on shared resources as synchronized. If a thread wants to
execute such a synchronized method on some object, then the thread automatically attempts to acquire the lock for that
object. If that lock has been taken by another thread, then the locking attempt is not successful but leads to blocking of the
thread. Once the thread holding the lock leaves the method, it automatically releases the lock, and other threads blocked
on that lock are made runnable by the OS. Thus, locking attempts of previously blocked threads can continue when they
are scheduled again.
MX with monitors is really that simple.

4

https://gitlab.com/oer/cs/programming/-/blob/main/os-java/TheaterEx.java
https://docs.oracle.com/javase/specs/jls/se18/html/jls-17.html


• Or for block: synchronized (syncObj) {...}

• Thread acquires lock for syncObj
Besides, you can also use other objects for synchronization if you want to turn blocks of code into critical sections. We will
not use this, however.

• Wait set (set of threads; wait() and notify(), explained next)
Finally, the Java monitor concept also includes a mechanism for cooperation based on waiting and signaling. For this purpose,
Java adds a wait set to each object, to be explained subsequently.

4 Cooperation with Monitors in Java

Let us see an example for cooperation with monitors in Java.

4.1 Producer/Consumer problems

� Classical synchronization problems

• Producers produce data, to be consumed by consumers

• Data in shared data structure, e.g., Java array

• Synchronization for data structure necessary
So-called producer/consumer problems are classical examples for mutual exclusion and thread synchronization in OS con-
texts.
Here, two types of threads cooperate: Producers produce some data, e.g., records, messages, or tasks, which are then
consumed by consumers. Producers place the generated data into a shared data structure, from which consumers retrieve
data. Thus, all these threads race around the shared data structure, with accessing code in critical sections, for which
mutual exclusion is necessary.

• One or more producers

• Generate data, e.g., records, messages, tasks
• Place data into bu�er (shared resource)

• Two bu�er variants: unbounded or bounded
• Producer blocks, if bounded bu�er is full

• One or more consumers

• Consume data
• Take data out of bu�er
• Consumer blocks, if bu�er is empty

In general, arbitrary numbers of producers and consumers may exist, and di�erent data structures may be used to manage the
data exchange between them. Frequently, bu�ers are used as abstraction for such data structures. Importantly, bu�ers may be
bounded, i.e., have limited capacity, or they may be unbounded.

If a bu�er is bounded, an insert operation by a producer may be a blocking operation: If the bu�er is full, the thread is blocked
until a consumer frees a slot in the bu�er.

Subsequently, you will see a method to insert data into a bounded bu�er, which is based on a Java array.

A get or retrieve operation by a consumer may also be blocking: If the bu�er is empty, the thread is blocked until a producer
�lled a slot in the bu�er.

4.2 Ideas for Cooperation

� Use waiting and signaling of monitors

� Threads may work with di�erent roles on shared data structures

• E.g., producer/consumer problems on previous slide

� Some may �nd that they cannot continue before others did their work

• The former call wait() and hope for notify() by the latter

• Cooperation (orthogonal to and not necessary for MX!)

• Wait set mentioned above and explained subsequently

Recall that monitors come with a mechanism that allow threads to wait for signals by others. This mechanism is particularly
useful if threads work with di�erent roles that ful�l complementary tasks.

Producers and consumers are a prime example for such roles.
As just explained, consumers may �nd an empty bu�er, which means that they cannot do anything useful. Thus, they should

be taken aside and not be considered by the scheduler, until a producer placed new data into the bu�er. With monitors in Java,
such a consumer thread invokes the method wait(), which blocks it until some thread, ideally a producer, calls notify().

In Java, such blocked threads are collected in the wait set of the this object, for which the next slide provides more details.

5

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html


4.3 wait() and notify() in Java

Cooperation between threads sharing resources can be managed with the methods wait() and notify() (or notifyAll()). A
thread can only invoke these methods on an object if it has acquired the lock for that object, i.e., if it currently executes inside the
object's monitor. Thus, usually, you see invocations of wait() and notify() in synchronized methods.

� Waiting via blocking

• wait(): thread unlocks and leaves monitor, enters wait set

• Thread enters state blocked

• Called by thread that cannot continue (without work/help of another thread)

If a thread �nds that it cannot make use of the shared resource in the current state, it can invoke wait() to release the lock on
that resource and leave its monitor. At that point in time, the thread's state changes to blocked, and the thread is recorded in
a special data structure associated with the object, called wait set. In the wait set, Java keeps track of all threads that have
invoked wait() on the object.

Once a thread has executed wait(), the object's lock is released, and other threads can acquire the object's lock and modify the
object's state.

� Noti�cations

• notify()

• Remove one thread from wait set (if such a thread exists)

• Change its state from blocked to runnable

• Called by thread whose work may help another thread to continue

• notifyAll()

• Remove all threads from wait set

• Only one can lock and enter the monitor, of course

• Only after the notifying thread has left the monitor, of course

• Overhead (may be avoidable with appropriate synchronization objects)

If a thread has modi�ed the object's state in such a way that there is reason to believe that waiting threads might now be able to
continue, the thread invokes notify() on the object, which removes one thread from the wait set and makes it runnable. When
that runnable thread is scheduled for execution later on, it can again try to enter the monitor by locking the object; once the
lock has been acquired, the thread resumes execution after the wait() method.

The method notifyAll() is an alternative to notify() that removes all threads from the wait set, not just one. You may want
to think about advantages and disadvantage of notifying all waiting threads yourself.

4.4 Sample synchronized Java Method

// Based on Fig. 4.17 of [Hai17]

public synchronized void insert(Object o)

throws InterruptedException

// Called by producer thread

{

while(numOccupied == buffer.length)

// block thread as buffer is full;

// cooperation from consumer required to unblock

wait();

buffer[(firstOccupied + numOccupied) % buffer.length] = o;

numOccupied++;

// in case any retrieves are waiting for data, wake/unblock them

notifyAll();

}

(Part of SynchronizedBoundedBu�er.java)
This slide shows the synchronized method insert() of a bounded bu�er, which is called by producers to insert some object.

The URL points to the full example, which also includes a method retrieve() for consumers. In the same directory, thread classes
are available as well.

As explained earlier, the method is synchronized to guarantee MX, which prevents races on the shared data structure.
Initially, the producer checks whether the bu�er is full. If so, it calls wait(), hoping for a noti�cation from a consumer thread.

Otherwise, the producer inserts the object at a free position.
This bu�er implementation makes use of an array, which has a �xed length. Note how two variables, firstOccupied and

numOccupied combined with modulo arithmetic, determine a free slot in the array.
Eventually, the producer calls notifyAll(), which unblocks all threads waiting on the bu�er. In particular, consumers that

were waiting for a new object in the bu�er can now try again to retrieve an object.

6

https://gitlab.com/oer/cs/programming/-/blob/main/os-java/SynchronizedBoundedBuffer.java


4.5 Comments on synchronized

� Previous method in larger program: bb.zip

• SynchronizedBoundedBuffer as shared resource

• Di�erent threads (Producer instances and Consumer instances) call synchronizedmethods on that bounded
bu�er

• Before methods are executed, lock of bu�er needs to be acquired

• This enforces MX for methods insert() and retrieve()

• In methods, threads call wait() on bu�er if unable to continue

• this object used implicitly as target of wait()

• Thread enters wait set of bu�er

• Until notifyAll() on same bu�er

• Note that thread classes contain neither synchronized nor wait/notify

The �rst URL here points to a ZIP archive which contains a test program that you can compile and run to try out the code
examples in these slides. Note that the archive not only contains an implementation based on the monitor concept but also with
semaphores. You can ignore the latter.

In any case, note how the threads call synchronized methods on the shared bounded bu�er, which guarantees MX. In addition,
wait() and notify() are used in these methods for cooperation of producers and consumers as explained on the previous slide.

In contrast, thread classes do neither contain synchronized nor wait() nor notify(). Indeed, resources need to be protected
with MX, not threads.

Bibliography

Hailperin, Max. 2019. Operating Systems and Middleware � Supporting Controlled Interaction. revised edi-
tion 1.3.1. https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-

Controlled-Interaction.
The bibliography contains references used in this presentation.

License Information

Source �les are available on GitLab (check out embedded submodules) under free licenses. Icons of custom
controls are by @fontawesome, released under CC BY 4.0.

Except where otherwise noted, the work �MX in Java�,© 2017-2026 Jens Lechtenbörger, is published under
the Creative Commons license CC BY-SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting license terms.
Source �les are available on GitLab, where the author would be happy about contributions, e.g., in terms of issues and merge

requests.

7

https://gitlab.com/oer/cs/programming/-/blob/main/os-java/bb.zip
https://gitlab.com/oer/cs/programming/-/blob/main/os-java/Producer.java
https://gitlab.com/oer/cs/programming/-/blob/main/os-java/Consumer.java
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Thread Terminology
	Thread States
	Java Threads
	Races
	Mutual Exclusion
	The Deadlock Empire, Part 2

	Monitors
	Monitor Idea
	Monitor Origin

	MX with Monitors in Java
	Monitors in Java: Overview
	Java, synchronized, this
	Possible Sources of Confusion
	Self-Study Task

	Java Monitors in Detail

	Cooperation with Monitors in Java
	Producer/Consumer problems
	Ideas for Cooperation
	wait() and notify() in Java
	Sample synchronized Java Method
	Comments on synchronized


