MX in Java *

Jens Lechtenborger

IT Systems, Summer Term 2024

The topic of mutual exclusion is explained in three presentations, of which this is the
second one.

1 Introduction

e Part 1

— Introduction
— Race Conditions
— Critical Sections and Mutual Exclusion
— Locking
— Pointers beyond class topics
e Part 2

— Monitors

— MX with Monitors in Java

— Cooperation with Monitors in Java
e Part 3

— Deadlocks

— Deadlock Strategies

— Further Challenges

— Conclusions

Based on the concepts introduced in the first part, we now look at monitors in general and
their implementation in Java in particular. Concerning Java, we first see how to guarantee
MX with monitors, before we look at an example for cooperation with monitors.

1.1 Thread Terminology

Take this quiz.

1.2 Thread States

Take this quiz.

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.


https://oer.gitlab.io/oer-courses/it-systems/14-OS-MX-II-Java.html
https://gitlab.com/oer/oer-courses/it-systems
https://gitlab.com/oer/oer-courses/it-systems

1.3 Java Threads

Take this quiz.

1.4 Races

Take this quiz.

1.5 Mutual Exclusion

Take this quiz.

2 Monitors

The monitor concept offers a fundamental MX mechanism.

2.1 Monitor Idea

e Monitor ~ instance of class with methods and attributes
e Equip every object (= class instance) with a lock

— Automatically

* Call lock() when method is entered
- As usual: Thread is blocked if lock is already locked
- Thus, automatic MX

- We say that executing thread entered the monitor or ex-
ecutes inside the monitor when it has passed lock() and
executes a method

* Call unlock() when method is left

- Thread leaves the monitor

The basic idea of monitors is as follows: Think of a monitor as an instance of a special
type of class, where each instance is automatically equipped with its own lock. The run-time
system ensures that before a method of such a class is executed on a class instance (which is
this in Java), the lock for that class instance needs to be acquired.

We say that a thread that has successfully executed lock(), “entered the monitor” or
“executes inside the monitor”.

Thus, monitors automatically provide mutual exclusion for methods of the monitor class:
If multiple threads share the same object (with a potential for race conditions), only one of
them can execute inside the monitor at any point in time, while others are blocked.

Importantly, each object has its own lock. Thus, two threads that operate on different
class instances can both acquire their different locks and execute the same monitor method
in parallel (without the danger of races as they do not share resources). Thus, to explicitly
point out a frequent misunderstanding: Methods are not locked; instead, objects are protected
with locks.

The next slide explains the origin of monitors in terms of an abstract data type (instead of
the more modern “class” formulation presented here). On that slide, you also see that monitors
not only guarantee MX; in addition, they provide methods for cooperation of threads.

Subsequent slides then discuss how the monitor concept is implemented in Java with the
keyword synchronized (which activates locking of the this object as explained here in general
terms) and methods for cooperation.



2.2 Monitor Origin
e Monitors proposed by Hoare; 1974

e Abstract data type with MX guarantee

Monitors were proposed decades ago by famous computer scientist Tony Hoare. You
may also know him as developer of quicksort.

Monitors can be understood as abstract data type that guarantees MX.

— Methods encapsulate local variables

x Just like methods in Java classes

Importantly, just as with object-oriented programming, monitors encapsulate
local variables as embedded data. Thus, all accesses to embedded data require
method invocations.

— Thread enters monitor via method

* Built-in MX: At most one thread in monitor

Threads executing monitor methods automatically try to acquire a lock for the
embedded data. As only one thread can own the lock, monitor methods guarantee
MX. As stated on the previous slide, we say that the successful thread “enters”
the monitor. While one thread executes inside the monitor, other threads are
blocked when they attempt to enter as well.

— In addition: Methods for cooperation

* cwait(x): Blocks calling thread until csignal (x)
- Monitor free then
* csignal(x): Starts at most one thread waiting for x

- If existing; otherwise, nothing happens
In addition to MX, monitors also offer methods that are meant for cooperation among
threads. Here, a thread may find that it cannot continue before some other thread changed
the state of the execution. Then, the first thread may call a wait method, which blocks it

until some other thread sends a matching signal.
We will see an example in Java shortly.

3 MX with Monitors in Java

Let us see how to use monitors for MX in Java.

3.1 Monitors in Java: Overview
e In Java, classes and objects come with built-in locks

— Which are ignored by default

You may be surprised to learn that in Java, classes and objects come with built-in
locks. However, those locks are ignored by default.

e Keyword synchronized activates locks

— Automatic locking of this object during execution of method

*x Automatic MX for method’s body
% Useful if (large part of) body is a CS


https://en.wikipedia.org/wiki/Tony_Hoare

To activate those locks, the keyword synchronized is necessary. If you declare a
method to be synchronized, a thread entering such a method automatically at-
tempts to acquire the lock for the method’s this object. Thus, MX is guaranteed
for the object accessed in the method’s body.

This approach is particularly useful if a large part of the method is a critical
section.

— E.g., for sample code from (Hailperin 2019) (for which you found
races previously):

public synchronized void sell() {
if (seatsRemaining > 0) {
dispenseTicket () ;
seatsRemaining = seatsRemaining - 1;
} else displaySorrySoldOut();
}

E.g., for the ticket selling code, we can simply declare sell() to be a synchronized
method, as shown here. Then, MX is guaranteed, and races around seatsRemaining no
longer occur.

3.1.1 Java, synchronized, this

e Java basics, hopefully clear
— Method sell() from previous slides invoked on some object, say
theater

* Each theater has its own attribute seatsRemaining

* seatsRemaining is really this.seatsRemaining, which is the
same as theater.seatsRemaining

- Inside the method, the name theater is unknown, theater
is the this object, which is used implicitly

e Without synchronized, races arise when two threads invoke sell() on
the same object theater

— With synchronized, only one of the threads obtains the lock on
theater, so races are prevented

This slide lists basic facts about the code on the previous slide. Please think about them.
Ask if necessary.

3.1.2 Possible Sources of Confusion

e With synchronized, locks for objects are activated

— For synchronized methods, thread needs to acquire lock for this
object

To some up, with synchronized, locks for objects are activated. When executing a
synchronized methods, the thread needs to acquire the lock for the this object. This
procedure turns the method into a critical section with MX for the this object.

e Methods cannot be locked

Note, again, that methods are not locked.



¢ Individual attributes of the this object (e.g., seatsRemaining) are not
locked

— (Which is not a problem as object-orientation recommends to en-
capsulate attributes, i.e., they cannot be accessed directly but only
through synchronized methods)

Also, a lock for the this object is acquired. However, individual attributes of that

object are not locked. If accesses to attributes are encapsulated by methods, as they
should be, this does not pose a problem for MX.

3.1.3 Self-Study Task

1. Inspect and understand, compile, and run this sample program, which
embeds the code to sell tickets, for which you found races previously.

2. Change sell() to use the monitor concept, recompile, and run again.
Observe the expected outcome.

(Nothing to submit here; maybe ask questions online.)
Please convince yourself that synchronized is all you need to prevent races for the ticket
selling code.

3.2 Java Monitors in Detail
e MX based on monitor concept

— See Java specification if you are interested in details

Java implements the monitor concept, with details specified at the URL given here.

e Every Java object (and class) comes with

— Monitor with lock (not activated by default)

*x Keyword synchronized activates lock

In essence, MX with Java is quite simple, as every Java object is equipped with
a lock. By default, however, these locks are not used. Instead, you need to use
the keyword synchronized if you want threads to acquire the locks for MX.

* For method: public synchronized methodAsCS(...) {...}

- First thread acquires lock for this object upon call (Class
object for static methods)

- Further threads get blocked

The simplest way to enforce MX is to declare methods operating on shared
resources as synchronized. If a thread wants to execute such a synchronized
method on some object, then the thread automatically attempts to acquire
the lock for that object. If that lock has been taken by another thread, then
the locking attempt is not successful but leads to blocking of the thread.
Once the thread holding the lock leaves the method, it automatically releases
the lock, and other threads blocked on that lock are made runnable by the
OS. Thus, locking attempts of previously blocked threads can continue when
they are scheduled again.

MX with monitors is really that simple.

% Or for block: synchronized (syncObj) {...}
- Thread acquires lock for sync0bj


https://gitlab.com/oer/cs/programming/-/blob/main/os-java/TheaterEx.java
https://docs.oracle.com/javase/specs/jls/se18/html/jls-17.html

Besides, you can also use other objects for synchronization if you want to
turn blocks of code into critical sections. We will not use this, however.

— Wait set (set of threads; wait () and notify(), explained next)

Finally, the Java monitor concept also includes a mechanism for cooperation
based on waiting and signaling. For this purpose, Java adds a wait set to each
object, to be explained subsequently.

4 Cooperation with Monitors in Java

Let us see an example for cooperation with monitors in Java.

4.1 Producer/Consumer problems

e (Classical synchronization problems

— Producers produce data, to be consumed by consumers
— Data in shared data structure, e.g., Java array

* Synchronization for data structure necessary
So-called producer/consumer problems are classical examples for mutual
exclusion and thread synchronization in OS contexts.
Here, two types of threads cooperate: Producers produce some data, e.g.,
records, messages, or tasks, which are then consumed by consumers. Pro-
ducers place the generated data into a shared data structure, from which
consumers retrieve data. Thus, all these threads race around the shared
data structure, with accessing code in critical sections, for which mutual
exclusion is necessary.

— One or more producers

x Generate data, e.g., records, messages, tasks

* Place data into buffer (shared resource)
- Two buffer variants: unbounded or bounded
- Producer blocks, if bounded buffer is full

— One or more consumers

* Consume data
- Take data out of buffer
- Consumer blocks, if buffer is empty

In general, arbitrary numbers of producers and consumers may exist, and different data
structures may be used to manage the data exchange between them. Frequently, buffers
are used as abstraction for such data structures. Importantly, buffers may be bounded,
i.e., have limited capacity, or they may be unbounded.

If a buffer is bounded, an insert operation by a producer may be a blocking operation:
If the buffer is full, the thread is blocked until a consumer freed a slot in the buffer.

Subsequently, you will see a method to insert data into a bounded buffer, which is
based on a Java array.

A get or retrieve operation by a consumer may also be blocking: If the buffer is empty,
the thread is blocked until a producer filled a slot in the buffer.


https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

4.2 Ideas for Cooperation
e Use waiting and signaling of monitors
e Threads may work with different roles on shared data structures
— E.g., producer/consumer problems on previous slide
e Some may find that they cannot continue before others did their work

— The former call wait() and hope for notify () by the latter
— Cooperation (orthogonal to and not necessary for MX!)

x Wait set mentioned above and explained subsequently

Recall that monitors come with a mechanism that allow threads to wait for signals by
others. This mechanism is particularly useful if threads work with different roles that fulfil
complementary tasks.

Producers and consumers are a prime example for such roles.

As just explained, consumers may find an empty buffer, which means that they cannot
do anything useful. Thus, they should be taken aside and not be considered by the scheduler,
until a producer placed new data into the buffer. With monitors in Java, such a consumer
thread invokes the method wait (), which blocks it until some thread, ideally a producer, calls
notify().

In Java, such blocked threads are collected in the wait set of the this object, for which
the next slide provides more details.

4.3 wait() and notify() in Java

Cooperation between threads sharing resources can be managed with the methods wait()
and notify() (or notifyAll()). A thread can only invoke these methods on an object if it
has acquired the lock for that object, i.e., if it currently executes inside the object’s monitor.
Thus, usually, you see invocations of wait() and notify() in synchronized methods.

e Waiting via blocking

— wait(): thread unlocks and leaves monitor, enters wait set

x Thread enters state blocked
* Called by thread that cannot continue (without work/help of
another thread)

If a thread finds that it cannot make use of the shared resource in the current state, it
can invoke wait() to release the lock on that resource and leave its monitor. At that
point in time, the thread’s state changes to blocked, and the thread is recorded in a
special data structure associated with the object, called wait set. In the wait set, Java
keeps track of all threads that have invoked wait() on the object.

Once a thread has executed wait (), the object’s lock is released, and other threads can
acquire the object’s lock and modify the object’s state.

e Notifications

— notify()
* Remove one thread from wait set (if such a thread exists)
- Change its state from blocked to runnable
x Called by thread whose work may help another thread to con-
tinue

— notifyAll()



* Remove all threads from wait set
- Only one can lock and enter the monitor, of course
- Only after the notifying thread has left the monitor, of course

- Overhead (may be avoidable with appropriate synchroniza-
tion objects)

If a thread has modified the object’s state in such a way that there is reason to believe
that waiting threads might now be able to continue, the thread invokes notify() on
the object, which removes one thread from the wait set and makes it runnable. When
that runnable thread is scheduled for execution later on, it can again try to enter the
monitor by locking the object; once the lock has been acquired, the thread resumes
execution after the wait() method.

The method notifyAll() is an alternative to notify() that removes all threads from
the wait set, not just one. You may want to think about advantages and disadvantage
of notifying all waiting threads yourself.

4.4 Sample synchronized Java Method

// Based on Fig. 4.17 of [Hail7]

public synchronized void insert(Object o)
throws InterruptedException

// Called by producer thread

{
while (numOccupied == buffer.length)
// block thread as buffer is full;
// cooperation from consumer required to unblock
wait();
buffer[(firstOccupied + numOccupied) % buffer.length] = o;
numOccupied++;
// in case any retrieves are waiting for data, wake/unblock them
notifyAll();
}

(Part of SynchronizedBoundedBuffer.java)

This slide shows the synchronized method insert() of a bounded buffer, which is called
by producers to insert some object. The URL points to the full example, which also includes
a method retrieve() for consumers. In the same directory, thread classes are available as
well.

As explained earlier, the method is synchronized to guarantee MX, which prevents races
on the shared data structure.

Initially, the producer checks whether the buffer is full. If so, it calls wait (), hoping for
a notification from a consumer thread. Otherwise, the producer inserts the object at a free
position.

This buffer implementation makes use of an array, which has a fixed length. Note how
two variables, firstOccupied and numOccupied combined with modulo arithmetic determine
a free slot in the array.

Eventually, the producer calls notifyAl11(), which unblocks all threads waiting on the
buffer. In particular, consumers that were waiting for a new object in the buffer can now try
again to retrieve an object.

4.5 Comments on synchronized

e Previous method in larger program: bb.zip

— SynchronizedBoundedBuffer as shared resource


https://gitlab.com/oer/cs/programming/-/blob/main/os-java/SynchronizedBoundedBuffer.java
https://gitlab.com/oer/cs/programming/-/blob/main/os-java/bb.zip

— Different threads (Producer instances and Consumer instances) call
synchronized methods on that bounded buffer

x Before methods are executed, lock of buffer needs to be acquired
- This enforces MX for methods insert() and retrieve()
* In methods, threads call wait () on buffer if unable to continue
- this object used implicitly as target of wait()
- Thread enters wait set of buffer
- Until notifyA11() on same buffer
* Note that thread classes contain neither synchronized nor wait/notify

The first URL here points to a ZIP archive which contains a test program that you can
compile and run to try out the code examples in these slides. Note that the archive not only
contains an implementation based on the monitor concept but also with semaphores. You can
ignore the latter.

In any case, note how the threads call synchronized methods on the shared bounded
buffer, which guarantees MX. In addition, wait() and notify() are used in these methods
for cooperation of producers and consumers as explained on the previous slide.

In contrast, thread classes do neither contain synchronized nor wait() nor notify().

Bibliography

Hailperin, Max. 2019. Operating Systems and Middleware — Supporting Con-
trolled Interaction. revised edition 1.3.1. https://gustavus.edu/mcs/max/
os-book/.

The bibliography contains references used in this presentation.

License Information

Source files are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

Except where otherwise noted, the work “MX in Java”, (© 2017-2024 Jens
Lechtenborger, is published under the Creative Commons license CC BY-SA
4.0.

This presentation is distributed as Open Educational Resource under freedom granting
license terms.


https://gitlab.com/oer/cs/programming/-/blob/main/os-java/Producer.java
https://gitlab.com/oer/cs/programming/-/blob/main/os-java/Consumer.java
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Thread Terminology
	Thread States
	Java Threads
	Races
	Mutual Exclusion

	Monitors
	Monitor Idea
	Monitor Origin

	MX with Monitors in Java
	Monitors in Java: Overview
	Java, synchronized, this
	Possible Sources of Confusion
	Self-Study Task

	Java Monitors in Detail

	Cooperation with Monitors in Java
	Producer/Consumer problems
	Ideas for Cooperation
	wait() and notify() in Java
	Sample synchronized Java Method
	Comments on synchronized


