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This presentation is an introduction to scheduling in operating systems.

1 Introduction

Let us look at essential questions and terminology of our topic.

1.1 Core Questions

e How does the OS manage the shared resource CPU? What goals are pursued?

e How does the OS distinguish threads that could run on the CPU from those that cannot (i.e., that are
blocked)?

e How does the OS schedule threads for execution?

(Based on Chapter 3 of (Hailperin 2019))

This presentation addresses the following questions:

How does the OS manage the shared resource CPU? What goals are pursued?

How does the OS distinguish threads that could run on the CPU from those that cannot (i.e., that are blocked)?
How does the OS schedule threads for execution?

1.1.1 CPU Scheduling

Warning! External figure not included: “CPU scheduling” (C) 2016 Julia Evans, all rights reserved from julia’s
drawings. Displayed here with personal permission.
(See HTML presentation instead.)

This drawing illustrates core ideas of scheduling. Importantly, the OS performs scheduling to enable multitasking, where
threads of multiple programs take turns on a single CPU core. When taking turns, context switches take place, which add some
overhead. Nevertheless, switching from a waiting thread to another thread is essential for an efficient use of the resource CPU.

1.2 Learning Objectives

e Explain thread concept (continued)

e Including states and priorities
e Explain scheduling mechanisms and their goals
e Apply scheduling algorithms

¢ FCFS, Round Robin

Take some time to think about the learning objectives specified here.

1.3 Retrieval Practice
e Before you continue, answer the following; ideally, without outside help.

e What is a process, what a thread, what multitasking?
e What does concurrency mean?

e How does it arise?

What are blocking system calls?

What is thread switching?

Before you continue, answer the questions listed here, ideally, without outside help.

! This PDF document is an inferior version of an OER in HTML format; free/libre Org mode source repository.
2Material created by Jens Lechtenbdrger; see end of document for license information.


https://drawings.jvns.ca/scheduling/
https://drawings.jvns.ca/scheduling/
https://oer.gitlab.io/oer-courses/it-systems/13-OS-Scheduling.html
https://gitlab.com/oer/oer-courses/it-systems

1.3.1 Thread Terminology

Take this quiz.

Agenda

The agenda for this presentation is as follows.
After this introduction, we focus on general ideas related to CPU scheduling. Afterwards, we revisit the thread concept and
add states as major piece of information for scheduling. Based on this updated picture, we explore different scheduling mechanisms.
Conclusions end the presentation.

2

Scheduling

Let us see details of CPU scheduling.

2.1

CPU Scheduling

e With multitasking, lots of threads share resources

Focus here: CPU

e Scheduling (planning) and dispatching (allocation) of CPU via OS

Scheduling is the planning of resource allocations. Here, we just consider the allocation of the resource CPU among multiple
threads.

Concerning wording, the planning itself is called scheduling, while the allocation is called dispatching. Thus, after making a
scheduling decision, the OS dispatches one thread to run on the CPU.

Non-preemptive, e.g., FIFO scheduling

e Thread on CPU until termination, blocking, yield

Two major scheduling variants are non-preemptive and preemptive ones. With non-preemptive scheduling, the OS allows the
currently executing thread to continue as long as it wants. The bullet point names some situations when a thread might
stop, which is when the next scheduling decision takes place: Clearly, when the currently running thread terminates, i.e.,
executes its last instruction, the CPU is free for another thread. Similarly, when the currently running thread is blocked, a
different thread should continue. Finally, a thread may give up the CPU voluntarily, which is called yielding and leads to
a scheduling decision by the OS. As a side note, a thread may yield for performance reasons, e.g., after releasing a heavily
requested resource.

Preemptive, e.g., Round Robin scheduling

e Typical case for desktop OSs

e Illusion of parallel executions, even on single-core CPU
1. Among all threads, schedule and dispatch one, say T0
2. Allow TO to execute on CPU for some time, then preempt, it
3. Repeat, go to step (1)

With preemptive scheduling, the OS may pause, or preempt, a thread in the middle of its execution, although it could continue
with more useful work on the CPU. Here, the OS uses a timer to define the length of some time slice, for which the dispatched
thread is allowed to run at most. If the thread executes a blocking system call or terminates before the timer runs out, the
OS cancels the timer and makes the next scheduling decision. When the timer runs out, it triggers an interrupt, causing the
interrupt handler to run on the CPU for the next scheduling decision.

By rapidly switching between various threads and allowing them to run for brief intervals, the OS can create the illusion of
parallel executions even when only a single CPU core is available.

e (Similar decisions in operations management)

As a side note, similar decisions take place in industrial production, which you may know from operations management.

2.2

Sample Scheduling Goals

e Scheduling is hard; various goals with trade-offs

Improvement for one goal may negatively affect others

e Performance

Response time
e Time from thread start or interaction to useful reaction

Throughput



e Number of completed threads (computations, jobs) per time unit
e More important for service providers than users
Scheduling is no easy task as it comes with conflicting goals, where improvements for one goal may negatively affect other goals.
For example, we are usually interested in high performance, which can be measured with throughput and response time. For
ordinary computer users, response time is probably the most obvious and most important performance measure. When we interact
with the computer, e.g., via keyboard, touch, or mouse, we expect an immediate reaction. If that reaction takes “too long”, focused
work might suffer.
Besides, throughput measures the number of tasks that complete their execution in a given time period. As ordinary computer
users rarely use their machines for the completion of numerous tasks, high throughput might be less relevant for them.
In contrast, if you think of batch processing, say for deep learning based on millions of training examples to build a model,
which takes hours to complete, then throughput is more relevant than response time.
Now, the trade-off is as follows: As each context switch incurs an overhead, fewer context switches are preferable for high

throughput. However, with fewer context switches, it takes longer for each thread to receive CPU time, which might increase
response time.

e User control

¢ Resource allocation

e Mechanisms for urgency or importance, e.g., priorities

Second, we may want to exert some control to influence the scheduling decisions. For example, when you think of rented
compute capacity, where you share resources with other customers, the resources allocated to you (including CPU time) depend
on the amount of money you pay.

Besides, programmers can assign priorities to threads to indicate their relative urgency or importance.

2.3 Thread Priorities

e Different OSs (and execution environments such as Java) treat priorities differently

e FE.g., numerical priority, so-called niceness value, deadline, ...

e Upon thread creation, its priority can be specified (by the programmer, with default value)
e Priority recorded in TCB
e Sometimes, administrator privileges are necessary for “high” priorities
e Also, OS tools may allow changing priorities at runtime

e Scheduling takes priorities into account

¢ Potentially with preemption

Different operating systems and execution environments, such as Java, handle thread priorities differently. Various approaches
exist to determine a thread’s priority, including numerical values, niceness levels, deadlines, and more. When creating a thread,
programmers can specify its priority, which defaults to a standard value if not provided. The assigned priority is then stored in
the Thread Control Block. In some cases, administrative privileges are necessary to create high-priority threads. Additionally, OS
tools may exist to enable dynamic priority adjustments during runtime.

Ultimately, scheduling algorithms consider these priorities when allocating resources, potentially preempting low-priority threads
when high-priority threads need CPU time.

3 Thread States

We will see that the OS keeps track of different states for threads.

3.1 OS Thread States
e Different OSs distinguish different sets of states; typically:

e Running: Thread(s) currently executing on CPU (cores)
e Runnable: Threads ready to perform computations

e Waiting or blocked: Threads waiting for some event to occur
Operating systems categorize threads into various states, commonly including:
Running threads are those that are currently executing instructions on some CPU core.

Runnable threads are those that are ready to perform computations. Thus, they await allocation of a CPU core by the OS.
‘Waiting or blocked threads are those that are currently paused, because they cannot continue before some event has occurred.

e OS manages states via queues (with suitable data structures)

¢ Run queue(s): Potentially per CPU core


https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

¢ Containing runnable threads, input for scheduler
* Wait queue(s): Potentially per event (type)

e Containing waiting threads
+ OS inserts running thread here upon blocking system call
« OS moves thread from here to run queue when event occurs

To manage these states efficiently, OSs employ specialized data structures, so-called queues. To manage thread states, two
types of queues are used:

One or more run queues, potentially dedicated to individual CPU cores, contain runnable threads. These serve as inputs for
the scheduler.

One or more wait queues, sometimes organized by event type, hold blocked threads. Here, the OS records a running thread
when it invokes a blocking system call. Once the awaited event occurs, the OS transfers the thread back to the run queue,
reactivating it for further processing. Note that blocked threads on wait queues do not need to be considered by the scheduler.

3.2 Thread State Transitions

Initiation
yield or preemption
dispatch
Runnable > Running
event wait
Waiting Termination

Figure 1: “Figure 3.3 of (Hailperin 2017)” by Max Hailperin under CC BY-SA 3.0; converted from GitHub

This diagram shows typical state transitions caused by actions of threads, decisions of the OS, and external I/O events. State
changes are always managed by the OS.

Newly created threads, such as the ones you created in Java, are Runnable. When the CPU is idle, the OS’ scheduler executes
a selection algorithm among the Runnable threads and dispatches one to run on the CPU, where it is in state Running. When that
thread yields or is preempted, the OS remembers that thread as Runnable.

If the thread invokes a blocking system call, the OS changes its state to Waiting. Once the event for which the thread waits
has happened (e.g., a key pressed or some data has been transferred from disk to RAM), the OS changes the state from Waiting
to Runnable. At some later point in time, that thread may be selected by the scheduler to run on the CPU again.

In addition, an outgoing arc Termination is shown from state Running, which indicates that a thread has completed its
computations (e.g., the main function in Java ends). Actually, threads may also be terminated in states Runnable and Waiting,
which is not shown here, but which can happen if a thread is killed (e.g., you end a program or shut down the machine).

3.3 Scheduling Vocabulary

Take this quiz.

4 Scheduling Mechanisms

Different scheduling mechanism exist, some of which we explore next.


https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0303.pdf




4.1 Three Families of Schedulers

e Families of schedulers

Subsequently, we look at sample scheduling algorithms for the
three families visualized here. We revisit the algorithms in
bold subsequently, while all algorithms except Earliest Eligible
Virtual Deadline First are covered in our OS book.

¢ Fixed thread priorities
e E.g., FIFO, Round Robin

The simplest family uses fixed thread priorities, for which
we subsequently consider the non-preemptive variant FIFO
and the preemptive variant Round Robin.

e Dynamically adjusted thread priorities

e E.g., decay usage in Mac OS X, priority boosting
in Windows

With dynamically adjusted thread priorities, the OS may
change priorities of threads in response to certain events.
Without going into too many details, decay usage schedul-
ing in macOS and priority boosting in Windows are based
on the following simple ideas: First, threads have some base
priority, and the scheduler prefers threads with higher pri-
ority. Suppose that threads initially have the same base
priority. Threads that are blocked, waiting for events, are
at a disadvantage regarding the share of CPU time that
they receive.

To counter that disadvantage, the scheduler of macOS grad-
ually decays, or reduces, the priority of running threads.
(And it increases the priority back to base priority when
not running.) Then, if a previously blocked thread becomes
runnable, its priority is high in relation to other threads
that ran a lot. Consequently, it is likely that the scheduler
picks the unblocked thread.

In contrast, with priority boosting in Windows, the prior-
ity of running threads is not changed, but when a previ-
ously blocked thread becomes runnable, the OS boosts, or
increases, its priority. Thus, again, its priority is high in re-
lation to other threads that ran a lot. Windows boosts the
priority based on types of events. In particular, it increases
the priority in larger amounts for threads that awaited user
interaction, which helps to reduce response times perceived
by users.

e Controlling proportional shares of processing time

e E.g., weighted variants of other algorithms and
Completely Fair Scheduler (CFS) in Linux

« Fairness: All parties receive their share

Proportional share schedulers assign weights to threads,
which express how large their share of CPU time should
be in relation to the CPU time of other threads. E.g., some
important thread may receive two times more CPU time
per period of time than other threads.

Fairness is a general goal related to resource allocation,
which is applicable beyond CPU scheduling. With fair-
ness, at any point in time all parties should have received
their promised share. Thus, the longer a thread runs, the
more unfairly it is preferred over the others. To resolve
this unfairness, CFS keeps track of how much threads run
ahead and lag behind. Then, it schedules the thread that
lags behind the most. Scheduling is proportional as weights
can be assigned that scale the time spent by threads on the
CPU.

As side note, since 2023, Earliest Eligible Virtual Deadline
First (EEVDF) is replacing CFS, completed in 2024. Here,
time spent on the CPU is still tracked for fairness, but used
to compute a virtual deadline, where less CPU time leads
to earlier deadlines. In addition, the virtual deadline is also
affected by the time slice wanted by a thread, with shorter
time slices leading to even earlier deadlines. The thread
with the earliest virtual deadline is then dispatched by the
scheduler.

Thus, I/O bound threads can be created with short time
slices, which leads to early virtual deadlines with small
response times once such threads become runnable. In
essence, the virtual deadlines can be perceived as dynamic

Scheduling Mechanisms

Round Robin (RR)

Weighted Round Robin (WRR)

Figure 2: Scheduling Mechanisms


https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2004cef11ea072838f99bd95cefa5c8e45df0847
https://github.com/firelzrd/bore-scheduler
https://github.com/firelzrd/bore-scheduler

4.1.1 Notes on Scheduling

e For scheduling with pen and paper, you need to know arrival times and service times for threads

e Arrival time: Point in time when thread created
e Service time: CPU time necessary to complete thread

e (For simplicity, blocking I/O is not considered; otherwise, you would also need to know frequency and
duration of I/O operations)
In the past, students wondered about the following facts: For scheduling with pen and paper, arrival times and service times for
threads are stated as part of tasks.
The arrival time simply is the point in time at which a thread is created.
The service time of a thread is the amount of time it needs for completion, executing on the CPU.

For simplicity, we do not consider blocking I/O operations for pen and paper tasks.

e OS does not know either ahead of time

e OS creates threads (so, arrival time is known), inserts them into necessary data structures
¢ When threads terminate, OS again participates

e Thus, OS can compute service time after the fact

¢ (Some scheduling algorithms require service time for scheduling decisions; then threads need to declare
that upon start. Not considered here.)

In contrast to exercise tasks, the OS does not know arrival times or service times ahead of time, which is not a problem:
As the OS creates threads, it learns their arrival times.

When threads leave the CPU, either temporarily or at their termination, the OS again participates. Thus, the OS can compute
service times during normal operation. More importantly, it “knows” that a thread wants more CPU time until it requests
termination.

As a side note, there are scheduling algorithms that require service times for scheduling decisions, but we do not consider this.

4.2 Fixed-Priority Scheduling
e Use fixed, numerical priority per thread

e Threads with higher priority preferred over others

e Smaller or higher numbers may indicate higher priority: OS dependent

Upon creation, each thread receives a fixed, numerical priority. The priorities of threads determine how much and how fast the
OS assigns CPU time to threads. If multiple threads compete for CPU time, the OS prioritizes those with higher priorities over
lower-priority ones.

The exact interpretation of what constitutes a “higher” or “lower” priority, depends on the OS being used.

e Implementation alternatives

¢ Single queue ordered by priority
e Or one queue per priority
« OS schedules threads from highest-priority non-empty queue

There are two common ways to implement thread scheduling based on priority, namely single queue or separate queues per
priority level.

First, with single queue ordered by priority, all threads are placed into a single queue but sorted according to their assigned
priority levels. Highest-priority threads appear at the front, followed by progressively lower-priority threads. When the OS
needs to schedule a new thread, it selects the first thread from the head of the queue.

Second, with separate queues per priority level, the OS maintains a set of separate queues, where each one contains only
threads with identical priority levels. At any given moment, the OS schedules threads solely from the highest-priority non-
empty queue. Once a higher-priority queue becomes empty, the OS moves down the list until it finds a queue containing
threads ready for execution.

e Subsequent examples: FIFO and Round Robin
Subsequently, we look at FIFO and Round Robin scheduling.
e Beware!
e Starvation of low-priority threads possible
e Recall: Starvation = continued denial of resource
« Here, low-priority threads do not receive resource CPU as long as threads with higher priority exist

Note that low-priority threads are at risk of starvation. Given enough runnable threads with higher priority, they might never
be selected by a fixed-priority scheduler.



4.2.1 FIFO/FCFS Scheduling
e FIFO = First in, first out

e (= FCFS = first come, first served)

e Think of queue in supermarket
e Non-preemptive strategy: Run first thread until completed (or yield or blocking)
e For threads of equal priority

First-in, first-out, also called first-come, first-serve, is a simple non-preemptive strategy. It just runs the selected thread (of
highest priority) as long as that thread needs.
Checkout counters at supermarkets work in just the same fashion.

4.2.2 Round Robin Scheduling
e Key ingredients

e Time slice (quantum, q)
e Timer with interrupt, e.g., every 30ms
® Queue(s) for runnable threads

e Newly created thread inserted at end

Round robin scheduling lies at the heart of many real-world scheduling algorithms. Round robin scheduling works with a
predefined time slice, also called quantum, for which a dispatched thread is allowed to run on the CPU. The OS enforces the
duration of the time slice with a clock that triggers an interrupt at the end of the time slice.

As explained already, the OS manages runnable threads in queues, among which scheduling decisions are made.

e Scheduling when (1) timer interrupt triggered or (2) thread ends, yields, or is blocked
Scheduling happens when the timer interrupt is triggered or the current thread terminates, yields, or is blocked.
1. Timer interrupt: Preempt running thread

e Move previously running thread to end of runnable queue (for its priority)
e Dispatch thread at head of queue (for highest priority) to CPU

o With new timer for full time slice

When the timer interrupt is triggered, its interrupt handler takes over, preempting the currently running thread. The
interrupt handler performs a context switch and invokes the scheduler. The scheduler moves the previously running thread
to the end of the queue for runnable threads (of its priority). Then, the scheduler dispatches the thread at the head of the
highest-priority, non-empty queue to the CPU. Before performing a context switch to that thread, the scheduler configures
the timer for a full time slice.

2. Thread ends, yields, or is blocked

e Cancel its timer, dispatch thread at head of queue (for full time slice)

When the thread ends, yields, or performs a blocking system call, the OS performs a context switch to the scheduler. The
scheduler cancels the current timer and updates thread queues appropriately: It deletes a terminated thread, it re-inserts
a yielding thread at the end of a runnable queue, or it inserts a blocked thread into a wait queue. Afterwards, as in the
previous case, the scheduler dispatches a new thread, again for a full time slice.

e Video tutorial in Learnweb

A video demonstrating round robin in action is available in Learnweb.

4.3 When to Schedule
e Unless explicitly specified otherwise, we consider preemptive scheduling with time slices and priorities

e Threads may be removed from CPU before they are “done”

e As with Linux kernel
o “All scheduling is preemptive: if a thread with a higher static priority becomes ready to run, the
currently running thread will be preempted and returned to the wait list for its static priority level.”

e Scheduling based on thread states, priorities, and time slices

e Sample events that may initiate scheduling

e Thread state(s) change
» E.g., thread created or finished, blocking system call, I/O finished; later: (un-) locking


https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=91088
https://man7.org/linux/man-pages/man7/sched.7.html
https://man7.org/linux/man-pages/man7/sched.7.html

e Thread priorities change
e Time slice runs out

Let us revisit when scheduling takes place. It turns out that precise answers depend on design and implementation decisions.
We consider preemptive scheduling of threads where time slicing enables multitasking; concerning priorities, we suppose that they
are handled with preemption as in the case of Linux, for which a quote from a man page is shown on the slide.

Importantly, the scheduler only considers runnable threads. Thus, state changes may require a scheduling decision. E.g., if a
thread invokes a blocking systems call, some other thread needs to be selected to run. Similarly, when an event occurs that makes
one or more previously blocked threads runnable, scheduling may happen: If a newly runnable thread has the highest priority, the
currently running one is preempted and scheduling takes place to select a new one; otherwise, the currently running thread is likely
to continue (but there may be implementations that disagree).

Similarly, if the priority of the currently running thread decreases below that of other threads or if some other thread or threads
gain the highest priority, scheduling must take place. In contrast, the creation of new threads with low priority does not require
scheduling.

Clearly, preemptive scheduling also takes place when the OS believes that the current thread ran long enough.

Be careful not to confuse interrupt processing with scheduling. Indeed, some of the above events involve interrupts while others
do not: What matters are events with relevance to scheduling as just discussed; whether an interrupt was involved in an event is
less important.

4.4 Self-Study Task for Scheduling

This task is available for self-study in Learnweb.
Perform Round Robin scheduling given the following situation:

q=4 Thread Arrival Time Service Time

T1 0 3
T2 1 6
T3 4 3
T4 9 6
T5 10 2

Please perform round robin scheduling for the scenario specified here.

5 Conclusions

Let us conclude.

5.1 Summary

e OS performs scheduling for shared resources

e Focus here: CPU scheduling

e Subject to conflicting goals
e CPU scheduling based on thread states and priorities

e Basic approaches use fixed priorities

e Desktop OSs keep track of time on CPU, priorities, and events for more advanced scheduling

Operating systems manage shared hardware resources like CPUs through scheduling algorithms. Focusing on CPU scheduling,
these algorithms aim to allocate processor time fairly among various threads based on their priority levels and current state. However,
“good” resource allocation is subject to conflicting goals such as maximizing overall system performance, ensuring responsiveness,
minimizing latency, and preventing starvation of low-priority threads.

CPU scheduling typically relies on basic approaches utilizing fixed priorities. These methods involve categorizing threads into
distinct groups based on their priorities and allocating CPU time accordingly. Overall, the OS aims to provide predictable behavior
and acceptable response times.

Desktop operating systems usually employ more sophisticated techniques beyond simple fixed-priority schemes. They maintain
detailed records about the amount of time spent on the CPU, priority settings, and pending events associated with each thread.
Based on this information, desktop OSs dynamically adjust thread priorities and manage context switches, leading to improved
fairness, reduced waiting times, and enhanced user experience. Nevertheless, striking an ideal balance remains challenging due to
the inherent tradeoffs involved in balancing the demands of diverse workloads and varying application requirements.
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License Information

Source files are available on GitLab (check out embedded submodules) under free licenses. Icons of custom
controls are by @fontawesome, released under CC BY 4.0.

Except where otherwise noted, the work “Scheduling”, (C) 2017-2025 Jens Lechtenborger, is published under
the Creative Commons license CC BY-SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting license terms.
Source files are available on GitLab, where the author would be happy about contributions, e.g., in terms of issues and merge
requests.

10


https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Core Questions
	CPU Scheduling

	Learning Objectives
	Retrieval Practice
	Thread Terminology


	Scheduling
	CPU Scheduling
	Sample Scheduling Goals
	Thread Priorities

	Thread States
	OS Thread States
	Thread State Transitions
	Scheduling Vocabulary

	Scheduling Mechanisms
	Three Families of Schedulers
	Notes on Scheduling

	Fixed-Priority Scheduling
	FIFO/FCFS Scheduling
	Round Robin Scheduling

	When to Schedule
	Self-Study Task for Scheduling

	Conclusions
	Summary


