
OS Introduction
*

Jens Lechtenbörger

IT Systems, Summer Term 2025

This presentation is an introduction to Operating Systems.

1 Introduction

� Partially based on Chapter 1 of (Hailperin 2019)

� Book available in Learnweb, LATEX sources on GitHub

� Tasks/quizzes and code examples in OS part may use bibliographic
keys �(Hailperin 2019)� or �[Hai19]� to refer to this book (or �[Hai17]�
for an earlier edition)

For Operating Systems, the textbook cited here is the main source. Note its bibliographic
keys, which may serve as pointers to the book in various places.

As usual, references in presentations may indicate other sources.

1.1 Learning Objectives

� Explain notion of Operating System and typical services

� Explain notion of kernel with system call API, user mode and kernel
mode

* (More details in next presentation)

� Explain notions and relationships of program, process, thread, multitask-
ing

� Use the Bash command line: Navigate in directories, view lines of �les,
search for patterns, use redirection and pipelines

Recall that learning objectives specify what you should be able to do after working through
a presentation and its tasks.

Take some time to think about the learning objectives speci�ed here.

1.2 Recall: Big Picture of IT Systems

� Explore abstractions bottom-up

In IT Systems, we explore abstractions bottom-up.

*This PDF document is an inferior version of an OER in HTML format; free/libre Org
mode source repository.

1

https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction
https://oer.gitlab.io/oer-courses/it-systems/10-OS-Introduction.html
https://gitlab.com/oer/oer-courses/it-systems
https://gitlab.com/oer/oer-courses/it-systems


� Computer Architecture: Build computer from logic gates

Figure 1: �NAND� under CC0 1.0; from GitLab

* Von Neumann architecture

* CPU (ALU), RAM, I/O

Figure 2: �CPU� under CC0 1.0; cropped and converted from Pixabay

We already know how to build a von Neumann computer starting from Nand
gates.

� Experiment with OS concepts

* Explain core OSmanagement concepts, e.g., processes, threads,
virtual memory

* Use GNU/Linux command line and explore system

Figure 3: �Tux, the Linux mascot� under CC0 1.0; from Wikimedia Commons

� Experiment with containerization for cloud infrastructures

* Explain core concepts

* Build images, run Docker containers and Kubernetes cluster

Figure 4: �Kubernetes logo� under Kubernetes Branding Guidelines; from
GitHub

2

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/nand.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://pixabay.com/en/cpu-processor-macro-pen-pin-564771/
https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:Tux.svg
https://www.docker.com/
https://kubernetes.io/
https://github.com/kubernetes/kubernetes/blob/master/logo/usage_guidelines.md
https://raw.githubusercontent.com/kubernetes/kubernetes/master/logo/logo_with_border.png


Figure 5: �Docker logo� under Docker Brand Guidelines; from Docker

In the next weeks, we look at major operating system concepts for the manage-
ment of computer hardware.

In the �nal part of the course, we then explore concepts related to virtualization
and cloud computing.

1.2.1 OS Responsibilities

Warning! External �gure not included: �What does your OS even do?� ©
2016 Julia Evans, all rights reserved from julia's drawings. Displayed here with
personal permission.
(See HTML presentation instead.)

Several OS presentations contain awesome drawings by Julia Evans such as this one. Some
drawings come with longer explanations while others are meant to speak for themselves as
additional perspective on class topics (or even beyond class topics).

Except for this additional context, this drawing would not be accompanied by a note. It
shows typical services provided by OSs and to be used by programs. The interface between
programs and OS will be revisited as API of so-called �system calls�.

Agenda

The agenda for the remainder of this presentation is as follows.
After this introduction, we look at sample operating systems, their de�nition, and general

concepts. Afterwards, we introduce multitasking as central ability of an OS to execute multiple
tasks at the same time, which may happen with processes or threads of execution.

Conclusions end the presentation.

2 Operating Systems

Let us look at operating systems.

2.1 Sample Modern Operating Systems

� Di�erent systems for di�erent scenarios

� Mainframes

* BS2000/OSD, GCOS, z/OS

� PCs

* MS-DOS, GNU/Linux, MacOS, Redox, Windows

� Mobile devices

* Variants of other OSs

* Separate developments, e.g., BlackBerry (BlackBerry 10 based
on QNX, abandoned), Google Fuchsia, Symbian (Nokia, most
popular smartphone OS until 2010, now replaced)

� Gaming devices

� Real-time OS

* Embedded systems

3

https://www.docker.com/brand-guidelines
https://www.docker.com/sites/default/files/legal/docker_logos_2018.zip
https://drawings.jvns.ca/os-responsibilities/
https://en.wikipedia.org/wiki/BS2000
https://en.wikipedia.org/wiki/General_Comprehensive_Operating_System
https://en.wikipedia.org/wiki/Z/OS
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/GNU%2FLinux_naming_controversy
https://en.wikipedia.org/wiki/MacOS
https://www.redox-os.org
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/BlackBerry_10
https://en.wikipedia.org/wiki/Google_Fuchsia
https://en.wikipedia.org/wiki/Symbian


* L4 variants, FreeRTOS, QNX, VxWorks

There is a vast variety of OSs for di�erent devices and usage scenarios, of which this slide
shows a selection.

The goal of the OS sessions is not to turn you into an expert for any speci�c OS, but to
teach you major concepts and techniques that are shared by most modern OSs. As explained
elsewhere, my hope is that you can apply your knowledge on the one hand when designing,
analyzing, or implementing information systems and on the other when taking control of your
own devices.

Based on my personal beliefs, I will not teach you anything about non-free OSs (except
maybe �rst steps to get away from them). In particular, examples shown in presentations and
in class will be based on the free OS GNU/Linux. As GNU/Linux is free, you can experiment
with it at any level of detail yourself.

2.2 De�nition of Operating System

� De�nition from (Hailperin 2019): Software

� that uses hardware resources of a computer system

� to provide support for the execution of other software.

� Towards these goals, OS provides API with services

Figure 6: �Figure 1.1 of (Hailperin 2019)� by Max Hailperin under CC BY-SA
3.0; converted from GitHub

According to our textbook, an OS is software that uses hardware resources of a computer
system to provide support for the execution of other software.

Towards these goals, an OS provides an API with services for other software.
Part (a) of the �gure shows the situation of a computer without an OS. Here, applications

(and programmers) need to interact with hardware directly at a low level of abstraction. This
is what you did on Hack. E.g., you needed to know a speci�c memory location to access the
keyboard.

Part (b) illustrates typical services provided by an OS to shield applications (and pro-
grammers) from hardware-speci�c details. E.g., multiple applications may run concurrently,
interact as parts of distributed systems with networking functionality, or share persistent
storage at the abstraction of �le systems (without needing to worry about, say, speci�cs of
particular keyboards, disks, or network cards and their interfaces).

What you see here is a typical example of layering to hide lower-layer details with the
abstractions of an interface in software engineering: The OS provides an API of functions that
application programmers can invoke to access OS services, in particular to access underlying
hardware. As explained later, that API is provided by a core part of the OS, which is called
kernel and whose functions are called system calls.

2.2.1 Aside: API

� API = Application Programming Interface

4

https://en.wikipedia.org/wiki/FreeRTOS
https://en.wikipedia.org/wiki/QNX
https://en.wikipedia.org/wiki/VxWorks
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0101.pdf
https://en.wikipedia.org/wiki/Application_programming_interface


� Set of functions or interfaces or protocols de�ning how to use some
system (as programmer)

* E.g., Java 18 API

· Packages with classes, interfaces, methods, etc.

� OS kernel provides system call interface for its services

Regarding wording, an API is an interface for application programmers. E.g., the language
Java comes with an API.

In OSs, the kernel provides an API for its services in terms of system calls.

2.2.2 OS Services

� OS services/features/functionality de�ned by its API

� Functionalities include:
Di�erent OSs provide di�erent services.

* Support for multiple concurrent computations

· Run applications, divide hardware, manage state
Nowadays we expect support for multiple concurrent computations, e.g., in
the form of multiple running applications, each of which needs CPU time,
memory, and potentially other hardware resources.

* Control interactions between concurrent computations

· E.g., locking, private memory
If applications run concurrently, we may want to control their interactions,
for example with private memory or with locking mechanism for shared data.

* Files for persistent storage and interaction
OSs usally o�er �le system functionality, allowing users and applications to
manage, and possibly to share, data persistently on secondary storage.

* Typically, also networking support
With networking support, applications on di�erent machines can communi-
cate with each other.

Figure 7: �Figure 1.1 of (Hailperin 2019)� by Max Hailperin under CC BY-SA
3.0; converted from GitHub

2.3 OS, Kernel, User Interface

� Boundary between OS and applications is fuzzy

The boundary between OSs and applications turns out to be a fuzzy one. For example,
is the web browser an integral part of the OS or not? A virus scanner? A tool to format
disk drives?

� Kernel is fundamental, core part of OS

5

https://docs.oracle.com/en/java/javase/18/docs/api/index.html
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0101.pdf


� Kernel de�nes API and services via system call interface

� More details on next slides and in next presentation

The core part of an OS that de�nes its elementary services and system calls is called
kernel. The kernel o�ers as an API with system calls for applications that require OS
services.

� User interface (UI; not part of kernel)

� UI = process(es) using kernel functionality to handle user input,
start programs, produce output, . . .

* User input: Voice, touch, keyboard, mouse, etc.

* Typical UIs: Command line, explorer for Windows, various desk-
top environments for GNU/Linux, virtual assistants

� Note: OSs for embedded systems may not have UI at all

The user interface, in case it exists at all, is not part of the kernel. In contrast, the OS
starts processes that make use of kernal functionality to provide an interface for users.
Through that interface, users can then interact with the computer, e.g., to start and
interact with applications.

In this course, you will learn about a particular command line interface called Bash.
Beyond that, we do not care much about di�erent types of user interfaces, some of
which are listed here.

2.3.1 How to Talk to OSs

Warning! External �gure not included: �How to talk to your operating system�
© 2016 Julia Evans, all rights reserved from julia's drawings. Displayed here
with personal permission.
(See HTML presentation instead.)

System calls are an important concept as they de�ne the services provided by an OS kernel
in terms of an API. Here, you see names of sample system calls, which are not important
to remember but which might help to shape your understanding, before system calls are
introduced on the next slide.

2.3.2 System Calls

� System call = function = part of kernel API

� Implementation of OS service

* E.g., process execution, main memory allocation, hardware re-
source access (e.g., keyboard, network, �le and disk, graphics
card)

� Di�erent OSs o�er di�erent system calls (i.e., o�er incompatible APIs)

� With di�erent implementations

� With di�erent calling conventions

A system call looks and feels like any other function call, only that the function provides
an OS service. E.g., if you start an application, under the hood a system call creates a new
process. If the application needs access to I/O devices, for example to access �les on disk,
system calls are executed.

Not surprisingly, di�erent vendors implement their system call APIs di�erently. Details
are not important for us.

6

https://en.wikipedia.org/wiki/Virtual_assistant
https://drawings.jvns.ca/syscalls/


2.3.3 User Space and Kernel Space

� CPU has privilege levels/rings/modes

� Machine instruction set restricted depending on levelWarning! Ex-
ternal �gure not included: �User space vs. kernel space� © 2016
Julia Evans, all rights reserved from julia's drawings. Displayed here
with personal permission.
(See HTML presentation instead.)

* E.g., 4 rings since Intel 80286

* Ring 3: User mode for programs

· I/O and memory access restricted

* Ring 2, 1: Usually unused

· Originally for system services and device drivers

* Ring 0: Kernel mode for OS

· Traditionally, most privileged

· (Recall negative ring numbers)

This drawing explores a distinction between user space and kernel space.
Brie�y, as you know from the OS Motivation, modern CPUs have di�erent privilege levels,

which may also be called rings, levels, or modes.
In these levels, di�erent subsets of the entire set of machine instructions are available.

E.g., in user mode, access to hardware is restricted, which implies that applications needing
hardware access must invoke system calls into the kernel for hardware access. As the kernel
runs at a more privileged level, it can then perform hardware access on behalf of the applica-
tion. For example, the visualization here is about a write operation on a �le, which requires
hardware access via the write system call.

Based on these privilege levels, we distinguish user space from kernel space, where the
former refers to �normal� applications, while the latter refers to the OS.

System calls lead to so-called context switches between di�erent execution contexts, here
between user space and kernel space (and back), which will be revisited in later presentations
when discussing interrupt handling and thread switching.

2.4 OS Architecture and Kernel Variants

Figure 8: �Monolith-, Micro- and a "hybrid" kernel� under CC0 1.0; from Wiki-
media Commons

This map of the Linux kernel provides a real-life monolithic example
This �gure shows di�erent approaches towards layering and modularization in the context

of OS kernels. First of all, note the common layers, namely applications at the top and
hardware at the bottom.

In between are di�erent layers related to what we think of as OS functionality. Note that
a horizontal line separates applications from the OS. The variants di�er in the amount of OS
functionality that is marked with a red background labeled �kernel mode�.

7

https://drawings.jvns.ca/userspace/
https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:OS-structure2.svg
https://commons.wikimedia.org/wiki/File:OS-structure2.svg
https://makelinux.github.io/kernel/map/


At one extreme, shown in the middle here, are so-called micro kernels, which just provide
the minimal functionality and services as foundation for full-�edged OSs. Typical functionality
that we expect from OSs, such as �le services or hardware independent network access, is then
not implemented in the kernel but in user mode processes or servers. The L4 family mentioned
later on as well as Fuchsia provide examples for micro kernels.

The other extreme is made up of so-called monolithic kernels, which provide everything
that we expect from OSs. For modularization, such kernels may be structured in a sequence
of layers, where the top layer provides the system call API, while the bottom layer implements
device driver abstractions to hide hardware peculiarities. Intermediate layers o�er levels of
abstraction on the way from hardware to application facing functionality. GNU/Linux and
Windows come with monolithic kernels.

Finally, hybrid kernels can be built as trade-o� between both extreme approaches. Re-
search and practice continue to explore di�erent variants.

2.4.1 Sample Microkernel: L4

� L4, developed by Jochen Liedtke, late 1990s

� Liedtke's 4th system (after Algol interpreter, Eumel, and L3)

� Now with family of L4 based kernels

� Notable properties

* 12 KB source code

· (Vs 918 KB for (heavily compressed) source code of Linux
1.0 in 1994)

* 7 system calls

* Abstractions: Address space, Threads, Inter-Process-Communication
(IPC)

� Breakthrough result in 2009, (Klein et al. 2009)

� Formal veri�cation of the OS kernel seL4

* Mathematical proof of correctness

· Updates/patches are a thing of the past

* More recent description in (Klein et al. 2014)

This slide contains some details about the highly in�uential micro kernel L4.
First of all, note its size of 12 KB. In contrast, the (heavily compressed) source code of

Linux 1.0 had a size of almost 1 MB in 1994 (which has grown to about 100 MB in the next 25
years for Linux 4.x in 2019). Thus, 12 KB is really small for software. This software contains
necessary kernel functionality for the creation of threads, for memory management, and for
communication.

The question of what constitutes a minimal OS kernel is not just an academic one. In
fact, for smaller pieces of software we can hope to perform mathematical correctness proofs.
Indeed, a break-through result is cited here, where the correctness of an L4 variant was
formally veri�ed. Please take a moment to think about this fact. Such software will never
need to be patched to �x bugs. Bugs do not exist.

What I would like you to remember is that formally veri�ed software exists, and it exists
at least up to the complexity of micro kernels. Thus, if you should ever �nd yourself in a
position where you are responsible for the correctness of software, say for autonomous devices
or critical infrastructures, you should remember that the state-of-the-art makes it hard to �nd
an excuse for buggy software and resulting system failures.

� L4 variants today

� OKL4, deployed in over 2 billion devices

8

https://en.wikipedia.org/wiki/Hybrid_kernel
https://en.wikipedia.org/wiki/L4_microkernel_family
https://mirrors.edge.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.xz
https://sel4.systems/
https://mirrors.edge.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.20.tar.xz
https://gdmissionsystems.com/products/cross-domain-solutions/hypervisor


* OS for baseband processor (modem, management of radio func-
tions)

· Starting with Qualcomm

* Embedded, mobile, IoT, automotive, defense, medical, indus-
trial, and enterprise applications

� Another variant in Apple's Secure Enclave coprocessor (see PDF on
this page)

* A7 processor (iPhone 5S, iPad mini 3) and later

� Airbus 350, Merkelphone

On a side note, L4 variants are actually deployed in billions of devices.

3 Multitasking

Multitasking refers to the ability of an OS to execute multiple tasks at the same time.
Technically, the system switches rapidly between di�erent tasks, giving the illusion that

the tasks are progressing simultaneously.

3.1 Multitasking Terminology

� Fundamental OS service: Multitasking

� Manage multiple computations going on at the same time

� E.g., surf on Web while Java project is built and music plays

Multitasking is a fundamental OS service. Multitasking is the management of multiple
tasks that seem to be active at the same time. E.g., a student might surf on the Web,
while a larger Java project compiles, and some application plays music.

Clearly, with a single CPU core, only one machine instruction belonging to one of these
tasks is executed at any point in time.

� OS supports multitasking via scheduling

� Decide what computation to execute when on what CPU core

* Recall: Frequently per second, time-sliced, beyond human per-
ception

The OS supports multitasking by scheduling the execution of multiple tasks or com-
putations on available CPU cores. This scheduling process involves deciding which
computation to execute at what speci�c CPU core and sharing CPU cores through
time-slicing.

A time slice is just a short period of time. With multitasking, each task takes a turn,
running for a time slice on the CPU. Once that time slice ends, the OS schedules
another task for execution, again for a time slice. This scheduling happens frequently
per second, beyond human perception, leading to the seemingly simultaneous execution
of multiple tasks.

� Multitasking introduces concurrency

� (Details and challenges in upcoming material)

� Recall: Even with single CPU core, illusion of �simultaneous� or �par-
allel� computations

9

https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web


* (Later presentation: Advantages include improved responsive-
ness and improved resource usage)

Multitasking based on time-slicing introduces concurrency, where even with a single
CPU core the illusion of simultaneous or parallel computations arises. We will investi-
gate challenges and advantages in upcoming presentations, and a later drawing o�ers
a preview.

3.2 Computations

� Various technical terms for �computations�: Jobs, tasks, processes, threads,
. . .

� We use only thread and process

Among the various technical terms that can be used for the computations going on in
our machines, we are only interested in process and thread as explained here and on
subsequent slides. The speci�cs of processes and threads vary from OS to OS, and,
in fact, some OSs may not know either of both notions. Typical modern OSs support
multiple processes, each of which can contain multiple threads.

� Process

* Created upon start of program and by programs (child processes)

* Container for related threads and their resources

* Unit of management and protection (threads from di�erent pro-
cesses are isolated from another)

Roughly, when you execute a program, e.g., a Java program, your OS creates a
process to manage computations and resources associated with that program. As
revisited later, the situation is more complex, as a single program can ask the
OS (via system calls) to create lots of processes. If one process P creates another
process C, then P is also called parent process of C, while C is a child process of
P. That way, a hierarchy of parent-child processes arises over time.

Importantly, the OS isolates di�erent processes from each other so that they are
protected from malicious and accidental actions of other processes. (In theory,
the crash of one process should not a�ect any other process; in practice, security
issues challenge this goal of isolation.)

� Thread

* Sequence of instructions (to be executed on CPU core)

* Single process may contain just one or several threads, e.g.:

· Online game: di�erent threads with di�erent code for game
AI, GUI events, network handling

· Web server handling requests from di�erent clients in di�er-
ent threads sharing same code

* Unit of scheduling and concurrency

In any case, when you start a program, the OS creates a process for that pro-
gram, and it also creates a thread to execute the program's instructions. The
programmer is free (to ask the OS via system calls) to create more threads that
execute in the context of the same process and, thus, can share resources and
data structures of their process. A later presentation will address how to create
threads in Java, where you invoke functions of the Java API to create threads,
which in turn are implemented with system calls in the Java runtime.

The OS keeps track of all existing threads and schedules them for execution on
CPU cores. This topic will be explored in the presentation on scheduling.

10



3.2.1 Threads!

Warning! External �gure not included: �Threads!� © 2016 Julia Evans, all
rights reserved from julia's drawings. Displayed here with personal permission.
(See HTML presentation instead.)

As illustrated here, a process may contain lots of threads, all of which share memory.
Each thread can execute its own code.
Sharing of resources may lead to race conditions, which are programming bugs, where

di�erent threads may access or overwrite intermediate results of other threads. You know
such problems as update anomalies in database systems. We will revisit race conditions and
counter measures in later presentations.

Importantly, with multiple cores, multiple threads can execute in parallel, speeding up
computations.

3.2.2 Process Aspects (1/3)

Warning! External �gure not included: �What's in a process?� © 2016 Julia
Evans, all rights reserved from julia's drawings. Displayed here with personal
permission.
(See HTML presentation instead.)

This drawing visualizes several aspects related to processes.

3.2.3 Process Aspects (2/3)

� Approximately, process ≈ running program

� E.g., text editor, game, audio player

� OS manages lots of them simultaneously

� Really, process = �whatever your OS manages as such�

� OS speci�c tools to inspect processes (research on your own!)

As a �rst approximation, you may think of a process as a running program. The OS is
able to manage multiple processes, which leads to multitasking.

To be more precise, a process is whatever your OS manages as process. While details de-
pend on the OS, the previous drawing o�ers some ideas, and the next slide provides examples.

3.2.4 Process Aspects (3/3)

� Single program may create multiple processes, e.g.:

� Apache Web server with �process per request� (MPM prefork)

� Web browsers with �process per tab� or separation of UI and web
content

* E.g., Firefox with projects Electrolysis and Project Fission

· Enter about:processes into address bar

The view of one running program as one process is only an approximation as a single
program is free to create multiple processes. (In fact, the code of the program then
contains multiple system calls that ask the OS to create new processes.)

As examples, web servers and web browsers often start multiple processes. E.g., with
Firefox, open some web pages in di�erent tabs, and enter about:processes into the
address bar to see the amount of isolated processes.

� Many-to-many relationship between �programs� and processes

11

https://drawings.jvns.ca/threads/
https://drawings.jvns.ca/process/
https://httpd.apache.org/docs/2.4/mod/prefork.html
https://wiki.mozilla.org/Electrolysis
https://wiki.mozilla.org/Project_Fission


� E.g., GNU Emacs provides lots of �programs�

* Core process includes: Text editor, chat/mail/news/RSS clients,
Web browser, calendar

· Neal Stephenson, 1999: �emacs outshines all other editing
software in approximately the same way that the noonday
sun does the stars. It is not just bigger and brighter; it
simply makes everything else vanish.�

* On-demand child processes: Spell checker, compilers, PDF viewer

In fact, the boundaries between programs may not be immediately visible, which can
be understood as many-to-many relationship between programs and processes. E.g.,
your instructor's work environment, Emacs, is a program running as process which runs
other programs with their processes for speci�c tasks.

Neal Stephenson has written these beautiful words about Emacs: �emacs outshines all
other editing software in approximately the same way that the noonday sun does the
stars. It is not just bigger and brighter; it simply makes everything else vanish.�

3.3 Processes vs Threads

Figure 9: Classi�cation of Processes and Threads from Anderson et al. (1997)

This �gure shows a classi�cation of platforms or execution environments for processes and
threads. Note that although all threads are represented using the same curved line for graph-
ical simplicity, each thread shown in the �gure can actually execute its own instructions,
independently from all other threads. Furthermore, although multiple threads are shown in
parallel, no assumptions are made whether their instructions are really executed in parallel;
clearly, parallel execution requires hardware support, e.g., in the form of multiple CPU cores,
as well as OS support.

As shown in quadrant Q2, a platform may be characterized as supporting just a single
process with a single thread, which e�ectively means that it has no notion of process or thread

12

https://www.gnu.org/software/emacs/
https://web.archive.org/web/20180218045352/http://www.cryptonomicon.com/beginning.html


at all but just happily executes whatever instructions are there in one undi�erentiated context.
Thus, multitasking is not supported. Actually, the Computer Architecture part of our course
introduced one such platform . . .

Q1 indicates multiple threads executing inside a single process, which may appear strange
at �rst sight, but you actually also know one such execution environment quite well. You
should not think about platforms consisting of hardware with OS here but about execution
environments that can be started inside OSs . . .

Q3 captures platforms with multiple single-threaded processes. Again, if everything is
single-threaded, then the platform actually does not support threads, but just schedules pro-
cesses for execution. This is mostly the case for older OSs.

Finally, Q4 contains multiple processes which in turn can host multiple threads. This is
what we take for granted subsequently.

4 Conclusions

Let us conclude.

4.1 Summary

� OS is software

� that uses hardware resources of a computer system

� to provide support for the execution of other software.

* Computations are performed by threads.

* Threads are grouped into processes.

� OS kernel

� runs in kernel mode of CPU,

� provides interface for applications, and

� manages resources.

� Micro kernels allow for correctness proofs.

An OS is software that uses hardware resources of a computer system to provide support
for the execution of other software. Computations are performed by threads, and threads are
grouped into processes, which represent running programs.

The code of the OS kernel runs with high privileges on the CPU. The kernel provides
an interface with services for applications and manages hardware resources. Di�erent kernel
variants exist, among which micro kernels may come with correctness proofs.

4.2 Exercises and Self-Study Tasks

Please take a break for some self-study tasks.

4.2.1 Processes and threads

Sort sample OSs into the quadrants of Anderson et al.

� Hack, MS-DOS, Java Virtual Machine, Windows 10, GNU/Linux, GNU/Linux
prior kernel 1.3.56, GNU/Linux starting with kernel 1.3.56

� It is no problem if you do not know those environments and guess
for this task

13



� MS-DOS dates back to the 1980s, the GNU/Linux kernel 1.3.56 to
1996

* Use educated guessing there ;)

Sort the OSs mentioned here into the quadrants of a previous slide.
This task is available for self-study in Learnweb.

4.2.2 Study Work: Bash Command Line

� Investigate The Command Line Murders

� Game, which teaches use of the Bash command line

� Command line = shell = text-mode user interface for OS

* Create processes for programs or scripts

� Di�erent shells come with incompatible features

* Game supposes Bash in combination with typical GNU/Unix
tools (e.g., grep, head, tail)

* See next slide for some options

� Task

� Access �les for game

* Download or clone with git clone https://github.com/veltman/clmystery.git

� Start playing game according to its README

* See next slide for hints

� While investigating the case, you need to search �les for clues, learn-
ing essential commands and patterns along the way

� We will ask you to submit some command(s)

� (Command line examples show up throughout this course; details of �le
handling to be revisited in presentation on processes)

As part of upcoming study work, investigate the Command Line Murders as instructed
here.

4.2.3 Using Bash as Command Line

� Where/how to start Bash as command line

� Built-in with GNU/Linux; use own (virtual) machine

� Alternatively, students reported success with Windows Subsystem
for Linux/Ubuntu on Windows

� Alternatives without Linux kernel (no or incomplete /proc for later
presentations)

* Maybe use Cygwin according to hints in game's cheatsheet, but
note that more students report problems with Cygwin than
with Windows Subsystem for Linux/Ubuntu mentioned above

* Shell coming with Git for Windows

* Terminal of macOS

14

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=84890
https://github.com/veltman/clmystery
https://github.com/veltman/clmystery/archive/master.zip
https://github.com/veltman/clmystery/blob/master/README.md
https://learn.microsoft.com/en-us/windows/wsl/about
https://learn.microsoft.com/en-us/windows/wsl/about
https://github.com/veltman/clmystery/blob/master/cheatsheet.md
https://gitforwindows.org/
https://en.wikipedia.org/wiki/Terminal_(macOS)


� Basic hints for The Command Line Murders

� Game's cheatsheet is misnamed; it contains essential information to
get you started

* Open in editor

� Once on command line, maybe try this �rst:

* mount to show �lesystems, e.g., with Cygwin, the location of C:
may be shown as /cygdrive/c

* ls (short for �list�) to view contents of current directory

* ls /cygdrive/c to view contents of given directory (if it exists)

* Beware! Avoid spaces in names of �les and directories: Space
character separates arguments (need to escape spaces with back-
slash or use quotation marks around name)

* pwd (short for �print working directory�) to print name of current
directory

* cd replace-this-with-name-of-directory-of-mystery (short
for �change directory�) to change directory to chosen location,
e.g., location of mystery's �les

* man name-of-command shows manual page for name-of-command

* Try man man �rst, then man ls

� Afterwards, follow game's README

* (Which supposes that you changed to the directory with the
game's �les already)

Investigating the Command Line Murders requires that you use a command line called
Bash. This slide provides pointers to get you started.

Bibliography

Hailperin, Max. 2019. Operating Systems and Middleware � Supporting Con-

trolled Interaction. revised edition 1.3.1. https://github.com/Max-Hailperin/
Operating-Systems-and-Middleware--Supporting-Controlled-Interaction.

Klein, Gerwin, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. 2014. �Comprehensive Formal
Veri�cation of an Os Microkernel.� Acm Trans. Comput. Syst. 32 (1):
2:1�2:70. https://doi.org/10.1145/2560537.

Klein, Gerwin, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, et al. 2009. �seL4: Formal Veri�cation
of an OS Kernel.� In Proceedings of the Acm Sigops 22nd Symposium on

Operating Systems Principles, 207�20. Sosp '09. Big Sky, Montana, USA:
ACM. https://doi.org/10.1145/1629575.1629596.
The bibliography contains references used in this presentation.

License Information

Source �les are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

15

https://github.com/veltman/clmystery
https://github.com/veltman/clmystery/blob/master/cheatsheet.md
https://github.com/veltman/clmystery/blob/master/README.md
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction
https://doi.org/10.1145/2560537
https://doi.org/10.1145/1629575.1629596
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Except where otherwise noted, the work �OS Introduction�, © 2017-2025
Jens Lechtenbörger, is published under the Creative Commons license CC BY-
SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting
license terms.

16

https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Learning Objectives
	Recall: Big Picture of IT Systems
	OS Responsibilities


	Operating Systems
	Sample Modern Operating Systems
	Definition of Operating System
	Aside: API
	OS Services

	OS, Kernel, User Interface
	How to Talk to OSs
	System Calls
	User Space and Kernel Space

	OS Architecture and Kernel Variants
	Sample Microkernel: L4


	Multitasking
	Multitasking Terminology
	Computations
	Threads!
	Process Aspects (1/3)
	Process Aspects (2/3)
	Process Aspects (3/3)

	Processes vs Threads

	Conclusions
	Summary
	Exercises and Self-Study Tasks
	Processes and threads
	Study Work: Bash Command Line
	Using Bash as Command Line



