
OS Overview
*

Jens Lechtenbörger

IT Systems, Summer Term 2025

Contents

1 Introduction 1

2 OS Plan 4

1 Introduction

1.1 Recall: Big Picture of IT Systems

� Explore abstractions bottom-up

� Computer Architecture: Build computer from logic gates

Figure 1: �NAND� under CC0 1.0; from GitLab

* Von Neumann architecture

* CPU (ALU), RAM, I/O

Figure 2: �CPU� under CC0 1.0; cropped and converted from Pixabay

� Experiment with OS concepts

* Explain core OSmanagement concepts, e.g., processes, threads,
virtual memory

* Use GNU/Linux command line and explore system

*This PDF document is an inferior version of an OER in HTML format; free/libre Org
mode source repository.

1

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/nand.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://pixabay.com/en/cpu-processor-macro-pen-pin-564771/
https://oer.gitlab.io/oer-courses/it-systems/09-OS-Overview.html
https://gitlab.com/oer/oer-courses/it-systems
https://gitlab.com/oer/oer-courses/it-systems


Figure 3: �Tux, the Linux mascot� under CC0 1.0; from Wikimedia Commons

� Experiment with containerization for cloud infrastructures

* Explain core concepts

* Build images, run Docker containers and Kubernetes cluster

Figure 4: �Kubernetes logo� under Kubernetes Branding Guidelines; from
GitHub

Figure 5: �Docker logo� under Docker Brand Guidelines; from Docker

1.1.1 OS Responsibilities

Warning! External �gure not included: �What does your OS even do?� ©
2016 Julia Evans, all rights reserved from julia's drawings. Displayed here with
personal permission.
(See HTML presentation instead.)

1.1.2 De�nition of Operating System

� De�nition from (Hailperin 2019): Software

� that uses hardware resources of a computer system

� to provide support for the execution of other software.

2

https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:Tux.svg
https://www.docker.com/
https://kubernetes.io/
https://github.com/kubernetes/kubernetes/blob/master/logo/usage_guidelines.md
https://raw.githubusercontent.com/kubernetes/kubernetes/master/logo/logo_with_border.png
https://www.docker.com/brand-guidelines
https://www.docker.com/sites/default/files/legal/docker_logos_2018.zip
https://drawings.jvns.ca/os-responsibilities/


Figure 6: �Figure 1.1 of (Hailperin 2019)� by Max Hailperin under CC BY-SA
3.0; converted from GitHub

1.2 Prerequisite Knowledge

� Be able to write, compile, and execute small Java programs

� What is an object? What is the meaning of this in Java?

� How do you execute a program that requires a command line argu-
ment?

� Be able to explain basic data structures (stacks, queues, trees) and algo-

rithms (in particular, hashing)

� Being able to explain the database transaction concept and update anoma-

lies

3

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0101.pdf


2 OS Plan

2.1 Big Picture of OS Part

Figure 7: OS course plan, summer 2025

Although the Hack computer does not have an OS, it will help to recall how you interact with
that machine. On Hack, you are able to run a single program, where you access hardware
directly. E.g., reading from the keyboard requires access to a special memory location that
represents the state of the underlying hardware device.

With OSs, applications no longer have direct access to hardware. Instead, OSs manage
applications and their use of hardware. You will learn that the core part of OSs is called
kernel, and each vendor's kernel comes with a speci�c interface to provide functionality to
applications, usually in the form of so-called system calls. E.g., when you access System.in

in Java to read keyboard input, the Java runtime executes a system call to ask the OS for
keyboard input.

Starting from system calls, we will look into techniques for input/output processing (I/O
for short) such as access to the keyboard. Recall that in Hack you programmed a loop to
wait for keyboard input. Clearly, such a loop keeps the CPU busy even if no key is pressed,
wasting the resource CPU if other applications could perform useful computations. Hence, I/O
is usually paired with interrupt processing, which does not exist in Hack. Brie�y, interrupts
indicate the occurrence of external events, and OSs come with interrupt handlers. Then, for
example, keyboard processing code only runs in response to key presses.

In contrast to Hack, OSs manage the execution of several applications, and each applica-
tion might contain several so-called threads of execution. It is up to application programmers
to decide how many threads to use for a single application (and you will create threads in

4



Java).
The OS manages all those threads and their scheduling for execution on the CPU (or

their parallel execution on multiple CPU cores). Usually, scheduling mechanisms involve time
slicing, which means that each thread runs for a brief amount of time before the OS schedules
a di�erent thread for execution. Such scheduling happens in intervals of about 10 to 50
milliseconds, creating the illusion of parallelism even if just a single CPU core exists. Such
time-sliced or parallel executions are also called concurrent executions.

If shared resources are accessed in concurrent executions, subtle bugs may arise, a special
case of which are update anomalies in database systems. The notion of mutual exclusion, MX
for short, generalizes several synchronization mechanisms to overcome concurrency challenges,
and we will look at typical related OS mechanisms and their use in Java.

Just as in Hack, instructions and code of applications need to be stored in memory. Dif-
ferently from Hack with its Harvard architecture, code and instructions are stored uniformly
in RAM in our von Neumann machines, and the OS manages the allocation of RAM. Impor-
tantly, mainstream OSs provide support for virtual memory, which does not exist in Hack.
Brie�y, with virtual memory the OS manages the allocation of memory in the form of RAM
and disk space to all running applications.

Bringing all these concepts together, mainstream OSs manage processes as abstraction
for resource management of applications, where the OS isolates di�erent processes from each
other. Importantly, threads of a single process cooperate and share resources (such as virtual
memory or �les).

To sum up, this �gure visualizes what OS topics will be discussed when, and how topics
build upon each other.

Note that some parts of this �gure are hyperlinked to other presentations, which the
mouse pointer should indicate.

2.2 A Quiz

Bibliography

Hailperin, Max. 2019. Operating Systems and Middleware � Supporting Con-

trolled Interaction. revised edition 1.3.1. https://github.com/Max-Hailperin/
Operating-Systems-and-Middleware--Supporting-Controlled-Interaction.

License Information

Source �les are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

Except where otherwise noted, the work �OS Overview�, © 2017-2025 Jens
Lechtenbörger, is published under the Creative Commons license CC BY-SA
4.0.

5

https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	OS Plan

