
Computer Architecture *

Jens Lechtenbörger

IT Systems, Summer Term 2024

This presentation on computer architectures concludes part 1 of IT Systems. It presents
the von Neumann architecture and Moore's law as concepts of general importance, before it
completes the Hack computer architecture in particular.

1 Introduction

Let us look at the core of our topic, its learning objectives, followed by a recap.

1.1 Today's Core Question

� How do the previously built chips �t together in a computer architecture?

� Based on Chapter 5 of (Nisan and Schocken 2005)

In this presentation, we solve the puzzle of building a computer by properly arranging all
previously built parts.

1.2 Learning Objectives

� Explain von Neumann architecture and discuss its principles, in general
and in relation to Hack

� Discuss implications of Moore's law

� Build, test, and analyze Hack computer

� Trace execution of programs (e.g., program counter, register and
memory contents)

After working through this presentation you should be able to discuss the von Neumann
architecture and its principles as well as implications of Moore's law.

Besides, you will be able to build, test, and analyze the Hack computer.

1.3 Retrieval Practice

� How to control the ALU?

� What is the Memory Hierarchy?

� What are the major components of the Hack Computer?

*This PDF document is an inferior version of an OER in HTML format; free/libre Org
mode source repository.

1

https://oer.gitlab.io/oer-courses/it-systems/07-Computer-Architecture.html
https://gitlab.com/oer/oer-courses/it-systems
https://gitlab.com/oer/oer-courses/it-systems


� How do binary Hack machine instructions look like?

Please take a brief break and write down answers to these questions, without using pre-
vious class material.

Agenda

The agenda of this presentation is as follows. After this introduction, we revisit the von
Neumann architecture with more details.

Then, you will see Moore's law and its implications and limitations.
Finally, we end our tour of building the Hack computer by using all previously built chips.

2 Von Neumann Architecture

As mentioned already, we usually build computers according to an architecture proposed by
John von Neumann.

2.1 Sketch of Von Neumann Architecture

Figure 1: (�von Neumann Architecture� by Kapooht under CC BY-SA 3.0;
converted from Wikimedia Commons)

� Design proposed in (von Neumann 1945)

The von Neumann architecture is a computing model that describes a fundamental design
of digital computers. It consists of the following main components: The Central Processing
Unit with Arithmetic Logic Unit and Control Unit operates on Memory and interacts with
Input and Output devices.

� Note: ROM is not part of von Neumann architecture

� Actually, Harvard architecture is variant of Hack with separate mem-
ories for data and instructions

� Details are not important for us

Note that the von Neumann architecture includes just one memory unit for data and
instructions, while Hack contains separate units for memory and instructions. Actually, the
variant of the von Neumann architecture with separate memories for data and instructions is
known as Harvard architecture.

2

https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Von_Neumann_Architecture.svg
https://en.wikipedia.org/wiki/Harvard_architecture


2.2 Von Neumann Principles

� Major principles

� Stored program concept

* Instructions stored in memory, just as data, modi�able

* General-purpose, programmable

The stored program concept is probably the most important aspect of the von
Neumann architecture, as it distinguishes machines built and programmed for a
single purpose from general-purpose, programmable computers.

In the stored program concept, memory contains data and instructions, which
makes computers general-purpose and programmable, as programs can be easily
modi�ed and executed.

Without further precautions, instructions can be used as data and also be mod-
i�ed. In general, self-modifying code is harder to read, so we rarely use this
feature. However, attackers may exploit this feature to inject their code into
vulnerable systems.

� Single CPU

* Singe-Instruction Single-Data (SISD) principle

* (In contrast to parallelism)

The single CPU executes instructions sequentially on single pieces of data,
following what is known as Single-Instruction Single-Data model. Several
variants of this model exist that o�er parallelism, e.g., for single instructions that
operate on multiple pieces of data or the case of multiple instructions operating
on multiple pieces of data in parallel.

Actually, modern processors provide di�erent types of parallelism for improved
performance.

� Von Neumann Bottleneck

* Fast CPU fetches every instruction and data over single bus from
slow memory

* Memory wall according to (Wulf and McKee 1995)

· CPU speeds increase much more than RAM speeds

· System performance bounded by memory speed

* Caching and multi-threading as mitigation

· Threads to be explained in OS part

The von Neumann bottleneck refers to the limitation imposed by the dif-
ferences in speed of CPU and memory: The fast CPU fetches every instruction
and data from slow memory over a single bus. This leads to a memory wall

phenomenon, a term coined in the paper mentioned here, where the CPU may
not be able to operate at full speed as it frequently needs to wait for data from
memory. This problem has increased over time as CPU speeds increased at a
much faster rate than RAM speeds.

Mitigations for this bottleneck include techniques like caching and multi-threading.
In fact, multi-threading by itself does nothing to improve the speed di�erence,
but it may enable the CPU to work on a di�erent thread of execution while the
thread executed so far is stalled by a memory access.

2.3 Fetch-Decode-Execute Cycle

� Use program counter to fetch instruction from memory

3

https://en.wikipedia.org/wiki/Single_instruction,_single_data


Figure 2: Figure under CC BY-SA 3.0

� Control unit decodes bits of instruction to determine operation

� CPU executes operation

� Maybe load data

� Perform (ALU) operation

� Maybe write result

� Update program counter

As explained in the context of the Hack architecture already, modern processors execute
architecture-speci�c machine instructions in a sequence of steps: First, a special register of
the processor, called program counter, contains the address of the next instruction to execute.
Using that address, the processor fetches an instruction from memory. Then, a control unit
decodes the bits of the instruction to �gure out what to do. Afterwards, the processor may
need to load some data, it executes an operation, probably using the ALU, and it may have
to write the result of the operation somewhere. Last, it updates the program counter.

3 Moore's Law

� Published in (Moore 1965)

Figure 3: Figure under CC BY-SA 3.0 Deed

� �The complexity for minimum component costs has increased at a
rate of roughly a factor of two per year [. . . ]. Certainly over the short
term this rate can be expected to continue, if not to increase. Over
the longer term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly constant for at

4

https://commons.wikimedia.org/wiki/File:Von_Neumann_Architecture.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Gordon_Moore_Scientists_You_Must_Know.png
https://creativecommons.org/licenses/by-sa/3.0/


least 10 years. That means by 1975, the number of components per
integrated circuit for minimum cost will be 65,000.

I believe that such a large circuit can be built on a single wafer.�

� Later corrected to �double every two years�

* Exponential improvements

Gordon Moore, a co-founder of Intel, published a prediction in 1965, which should later
become famous as Moore's law. You see an essential quote here.

Slightly rephrasing the quote, he predicted that, at the same cost, every year about
twice as complex chips could be produced. In popular interpretation, chips would be twice as
powerful at the same cost every year, thanks to continuing miniaturization.

Later, this prediction was corrected, and used as marketing and engineering goal by Intel,
to produce twice as powerful chips every two years.

Note that repeated multiplication by 2 over decades embodies an exponential growth,
which is probably a unique achievement among technical innovations across domains. Con-
sequently, this law has had profound implications for the computer industry, driving rapid
advancements in computing power and miniaturization while reducing costs. In particular,
the success of ever more powerful computers turned out to be a driver for innovation across
various �elds and industries.

3.1 Sample Numbers

Figure 4: �Moore's Law� by Hannah Ritchie and Max Roser under CC BY 4.0;
from Wikimedia Commons

This graph based on Wikipedia data shows the increase of transistor counts following Moore's
law in the past decades.

Note that a lot of data points are close to a straight line. Given the logarithmic scale of
the y-axis, the graph indicates an exponential increase in the number of transistors over time,
up to billions of transistors per chip today.

5

https://creativecommons.org/licenses/by/4.0
https://commons.wikimedia.org/wiki/File:Moore%27s_Law_Transistor_Count_1970-2020.png


3.2 Future Perspectives

� Chip's �speed� doubled every two years

� Due to continued miniaturization

* Smaller transistors need less power, switch faster
For decades, progress in miniaturization led to smaller and faster transistors,
more of which were integrated into individual chips.

* Until limits of physics reached

· Intel Skylake (2015) transistors are around 100 atoms across

· Leak current, heat, quantum e�ects

* To limit energy usage, only parts of a chip are powered-on

· Powered-o� areas referred to as �dark silicon� (Esmaeilzadeh
et al. 2011)

However, at the current nanometer scale of transistors, limits of physics
make continued miniaturization unlikely. For example, at this nanoscale,
quantum tunneling occurs, where electrons pass barriers that should not be
passable under classical mechanics. Such e�ects degrade the performance of
transistors.
Besides, to keep energy usage under control, increasingly larger fractions of
all transistors on a chip need to be powered-o� at any point in time. These
powered-o� parts are referred to as �dark silicon�. Clearly, powered-o� parts
do not contribute to the processor's performance.

� Options according to (Lundstrom and Alam 2022) (beyond class)

* 2D nanoelectronics, 3D terascale integration, functional integra-
tion

The paper cited here discusses three potential ways forward in view of Moore's
law. Although these topics are beyond our class goals, you may still want to read
the short paper: First, classical, two-dimensional, nanoscale fabrication processes
for transistors will eventually hit the quantum tunneling limit, preventing further
miniaturization.

Second, the transistor count can be increased by three-dimensional stacking of
logic, memory, and power chips, which comes with its own set of challenges.

Third, deviating from the von Neumann architecture, special-purpose, application-
speci�c processing units may be used much more frequently throughout the com-
puter and its input and output devices. Thus, the load on CPUs would be
reduced, as they receive processed information instead of raw data.

In essence, a further increase in the number of transistors is unlikely to result
from further nanoscale miniaturization, but from �terascale electronics� in the
form of three-dimensional stacking and added functionality.

3.3 Parallel Programming

� For decades, individual CPUs became more powerful

� Now, CPUs contain more cores

� Need parallel programming to make programs faster
Thanks to Moore's law, we have grown used to ever more powerful, faster CPUs.
However, we now see CPUs that contain more and more cores. Basically, you can
think of a core as a separate CPU, of about the same speed. Thus, a multi-core
CPU essentially embeds several CPUs.

Importantly, a classical, single-threaded program will only run on a single of these
cores, without any bene�t in terms of speed.

To take advantage of multiple cores, parallel programming is necessary.

6

https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law
https://en.wikipedia.org/wiki/Quantum_tunnelling


� OS Topics

� Processes and threads

* Processes are programs in execution

· Each process can have multiple threads of execution

· Each core can execute a di�erent thread

· Needs to be programmed

� Concurrency and mutual exclusion

* Protect shared data structures (e.g., via locks)

· Otherwise, data structures will be corrupted (cf. locking and
update anomalies in database systems)

* Programmers must learn this

In the operating systems part of the course, we will address selected topics related to
parallel programming such as processes and threads. Some aspects are mentioned here.

4 Hack Computer

Let us now build the hack computer.

4.1 Hack Input/Output Devices

� Recall: Memory-mapped I/O

Figure 5: �Hack Computer� by user52174 under CC BY-SA 4.0; from StackEx-
change

Recall that the Hack computer contains a screen as output device and a keyboard as
input device. Both devices are represented with memory maps, which abstract away
details of the underlying hardware.

7

https://cs.stackexchange.com/users/152243/user52174
https://creativecommons.org/licenses/by-sa/4.0/
https://cs.stackexchange.com/questions/153154/hack-computer-from-nand2tetris-registers-any-real-world-examples-of-similar-d
https://cs.stackexchange.com/questions/153154/hack-computer-from-nand2tetris-registers-any-real-world-examples-of-similar-d


� Screen

* Built-in chip Screen

· Acts like RAM8K (with in[16], address[13], load, out[16])

· Bit patterns control pixels on screen

The screen comes as builtin chip that acts just like an appropriately sized RAM
chip. Each bit in that RAM area controls one pixel on screen.

� Keyboard

* Built-in chip Keyboard

· No input, only output out[16], re�ects currently pressed key
The keyboard comes as builtin chip that only produces a single word as output.
This word is a code for the currently pressed key, 0 if no key is pressed.

4.2 Hack Data Memory

� Speci�cation in Memory.hdl

CHIP Memory {

IN in[16], load, address[15];

OUT out[16];

Parts:

...

}

� Output out with contents of memory location address

� If load then store in at address

� Di�erent address ranges

* 0-16383: Access to RAM16K

* 16384-24575: Access to Screen

* 24576: Access to Keyboard

* Larger values are invalid

Data memory in the Hack computer consists of usual RAM and of the memory maps for
screen and keyboard. The address ranges for the di�erent components are repeated here.

4.3 Hack Instruction Memory

� Recall ROM32K

Figure 6: Figure under CC0 1.0

Instruction memory in the Hack computer just consists of a single ROM chip.

8

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/rom32k.tex
https://creativecommons.org/publicdomain/zero/1.0/


4.4 Hack CPU Chip

� Speci�cation via machine language and CPU.hdl

Figure 7: Figure under CC0 1.0

� Details of machine language include:

* Three registers: A, D, PC

* Implicit memory location M (addressed by A register)

CHIP CPU {

IN inM[16], // M value input (M = contents of Memory[A])

instruction[16], // Instruction for execution

reset; // Signals whether to re-start the current

// program (reset=1) or continue executing

// the current program (reset=0).

OUT outM[16], // M value output

writeM, // Write into M?

addressM[15], // Address in data memory (for M)

pc[15]; // address of next instruction

PARTS: ...}

The CPU for the Hack computer is a complex chip whose characteristics are shown here.
Importantly, the machine language de�nes what the CPU is able to do. In particular, it
de�nes the number of available registers and a method to access data memory.

The CPU may receive three pieces of input: First, incoming data from the implicit memory
location M. Second, the next instruction to execute from ROM. Third, a reset bit to reset the
program counter.

The CPU produces four pieces of output, out of which three de�ne whether and where
what should be written to data memory via the implicit memory location M.

In addition, the contents of the program counter de�ne the address for the next instruction
in ROM.

We investigate details of the CPU's inner workings next.

4.4.1 ALU with Registers

� Recall C instruction

� 1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

9

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/cpu-chip.tex
https://creativecommons.org/publicdomain/zero/1.0/


Figure 8: Operation Bits of
Hack C-Instructions

Figure 9: Figure under CC0 1.0

Recall that the ALU is a major component of the CPU and that six control bits determine
the ALU's operation. Moreover, C-instructions contain those six bits. An additional seventh
bit, the a-bit, controls the operands of the ALU.

As visualized here, the D-register is wired as �rst input into the ALU.
With the a-bit as selector, a Mux provides the choice between A-register and memory

contents as second input into the ALU: If the a-bit is set, M is chosen instead of A.

4.4.2 Proposed CPU Implementation

Figure 10: Figure under CC0 1.0

� Incomplete picture

� Several inputs �c� denote control inputs

* E.g., load bits for registers, selector for Mux

* Computed by additional control logic, revisited in class

· Control unit of von Neumann architecture

· Decoding of instruction

This picture suggests a possible sketch for the inner workings of the Hack CPU. Note that
the parts from the previous slide are embedded here.

In addition, registers and program counter have control inputs, whose values depend on
the currently executed instruction. Towards that end, the control unit of the von Neumann
architecture decodes the current instruction and routes necessary control information to each
component. In the case of Hack, when implementing the CPU, we need to add suitable control
logic.

We will discuss some aspects of this control logic in class.

4.5 Hack Computer Chip

� Speci�cation in Computer.hdl

10

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/alu-with-registers.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/cpu.tex
https://creativecommons.org/publicdomain/zero/1.0/


Figure 11: Figure under CC BY-SA 4.0

� Hack computer, including CPU, Memory (with RAM16K, Screen, Keyboard),
ROM32K

� Input reset allows to (re-) start execution of program in ROM

� Build in Project 5

Once CPU and Memory are built, assembly of the Hack computer is rather straightforward.
It just embeds three parts, namely CPU, Memory, and ROM.

5 Conclusions

Let us conclude.

5.1 Summary

� Von Neumann architecture as blueprint for programmable, general-purpose
computers

� Bottleneck from memory access, memory wall

� Hack as variant with ROM

� Moore's law predicts exponential growth of computer power

� Physical limits ahead

� Parallel programming skills required

This presentation contains general ideas related to the von Neumann architecture and to
Moore's law as fundamental aspects of modern computers.

� Project 5: Hack computer, end of Part 1 of IT Systems

11

https://cs.stackexchange.com/questions/153154/hack-computer-from-nand2tetris-registers-any-real-world-examples-of-similar-d
https://creativecommons.org/licenses/by-sa/4.0/


� Few components: CPU, data memory, instruction memory

* CPU executes machine instructions

* Memory-mapped I/O for screen and keyboard

Building the Hack computer ends part 1 of IT Systems. Now, we are in control of a simple
variant of the von Neumann architecture with only three components. Of these, the CPU is
certainly the most complex piece. Overall, the Hack computer can execute programs in its
own machine language, where keyboard and screen are available as memory-mapped input
and output devices.

5.2 Outlook

� In part 2, Operating Systems, we revisit I/O

� Programmed I/O (polling) vs interrupt-driven I/O

� You �polled� when accessing the keyboard in Hack

* Poll: �Has a key been pressed yet?�

· If not, wait in loop → Waste of CPU time

� Interrupt: Additional input from I/O device to CPU

* Via pin or bus

· Noti�cation to CPU: �Hey, someone pressed key X here.
Please act.�

· If no key, no unnecessary processing time

· However, interrupt overhead; to be discussed

In part 2 of IT Systems, we discuss Operating Systems. In that context, we also revisit
input output processing. We contrast programmed I/O, which is called polling, and interrupt-
driven I/O.

When accessing the keyboard in Hack, you engaged in polling, which entails repeatedly
asking: Has a key been pressed yet?

If not, the system waits in a loop, resulting in a waste of CPU time.
On the other hand, interrupt-driven I/O involves additional input from the device to the

CPU, typically through a pin or bus. The device noti�es the CPU, saying: Hey, someone
pressed key X here. Please act.

With interrupts, there is no unnecessary processing time if no key is pressed. However,
there is an overhead associated with interrupts, which we will discuss later.

5.3 Beyond Class

� There is much more to computer architecture, e.g.:

� Optimizations

* Parallelism, e.g., pipelining with speculative execution, hyper-
threading, (heterogeneous) multi-core

* Special-purpose processors, e.g., graphics, machine learning, net-
working

� Variety

* Bus variants

* Embedded computers

� Non-traditional architectures

12

https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Speculative_execution
https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/Heterogeneous_computing
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Embedded_system


* E.g., quantum, neuromorphic, adiabatic, biological

Computer architecture encompasses much more beyond what has been discussed, in par-
ticular various optimizations. These optimizations include parallelism, such as pipelining,
hyperthreading, and multi-core processing, as well as speculative execution. Moreover, there
are special-purpose processors designed for tasks like graphics rendering, machine learning,
and networking.

Additionally, computer architecture presents a wide variety of implementations, including
di�erent bus variants and embedded computing systems.

Finally, research and business explore non-traditional computing architectures, for which
you �nd sample hyperlinks on the slide.

5.4 Self-Study-Tasks

� Taking all other parts for granted, implement Computer.hdl

� Part of Project 5

� (In class, we proceed backwards, with Memory and CPU)

Please take a break and implement the Hack computer.
Also think about the proposed CPU implementation and data memory. Do questions

arise that should be discussed in class?

Bibliography

Esmaeilzadeh, Hadi, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. 2011. �Dark Silicon and the End of Multi-
core Scaling.� In Proceedings of the 38th Annual International Symposium

on Computer Architecture, 365�76. https://doi.org/10.1145/2000064.

2000108.
Lundstrom, Mark S., and Muhammad A. Alam. 2022. �Moore's Law: The

Journey Ahead.� Science 378 (6621): 722�23. https://www.science.org/
doi/abs/10.1126/science.ade2191.

Moore, Gordon E. 1965. �Cramming More Components onto Integrated Cir-
cuits.� Electronics 38 (8). https://www.computerhistory.org/collections/
catalog/102770822.

Neumann, John von. 1945. �First Draft of a Report on the EDVAC.� University
of Pennsylvania. https://web.mit.edu/STS.035/www/PDFs/edvac.pdf.

Nisan, Noam, and Shimon Schocken. 2005. The Elements of Computing Sys-

tems: Building a Modern Computer from First Principles. The MIT Press.
https://www.nand2tetris.org/.

Wulf, Wm. A., and Sally A. McKee. 1995. �Hitting the Memory Wall: Im-
plications of the Obvious.� Sigarch Comput. Archit. News 23 (1): 20�24.
https://doi.org/10.1145/216585.216588.
The bibliography contains references used in this presentation.

License Information

Source �les are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

13

https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Neuromorphic_engineering
https://en.wikipedia.org/wiki/Adiabatic_circuit
https://en.wikipedia.org/wiki/Biological_computing
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108
https://www.science.org/doi/abs/10.1126/science.ade2191
https://www.science.org/doi/abs/10.1126/science.ade2191
https://www.computerhistory.org/collections/catalog/102770822
https://www.computerhistory.org/collections/catalog/102770822
https://web.mit.edu/STS.035/www/PDFs/edvac.pdf
https://www.nand2tetris.org/
https://doi.org/10.1145/216585.216588
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Except where otherwise noted, the work �Computer Architecture�, © 2024
Jens Lechtenbörger, is published under the Creative Commons license CC BY-
SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting
license terms.

14

https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Today’s Core Question
	Learning Objectives
	Retrieval Practice

	Von Neumann Architecture
	Sketch of Von Neumann Architecture
	Von Neumann Principles
	Fetch-Decode-Execute Cycle

	Moore’s Law
	Sample Numbers
	Future Perspectives
	Parallel Programming

	Hack Computer
	Hack Input/Output Devices
	Hack Data Memory
	Hack Instruction Memory
	Hack CPU Chip
	ALU with Registers
	Proposed CPU Implementation

	Hack Computer Chip

	Conclusions
	Summary
	Outlook
	Beyond Class
	Self-Study-Tasks


