
Hack Memory *

Jens Lechtenbörger

IT Systems, Summer Term 2024

Our next ambitious goal lies in the de�nition of a machine language for the Hack platform.
Before we approach that goal, we take a brief look at memory in Hack. In this course, we
do not build memory chips ourselves, but we take them for granted and only look at their
functionality.

1 Introduction

Let us begin with a brief look at the core of our topic and its learning objectives.

1.1 Today's Core Question

� What are bits, bytes, words, registers, RAM, ROM?

� Based on Chapter 3 of (Nisan and Schocken 2005)

� (We skip Project 3)

This presentation introduces basic terminology related to main memory in computers, in
particular bits, bytes, words, registers, RAM, and ROM.

However, Project 3 is not part of our course. Thus, we do not build memory chips but
take them for granted.

1.2 Retrieval Practice

� Prior knowledge

� What types of memory exist in Hack for what purposes?

* (Recall Hack Computer Architecture)

Please take a brief break and write down the types of memory in Hack, without using
previous class material.

1.3 Learning Objectives

� Explain memory hierarchy

� Explain functionality of RAM, ROM, PC

� In particular for Hack chips

� Convert memory sizes (bits, bytes, larger sizes)

Please think about the learning objectives for this presentation. Which ones did you
achieve already, maybe based on skills outside this course?

Missing ones are covered subsequently.

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://oer.gitlab.io/oer-courses/it-systems/05-Hack-Memory.html
https://gitlab.com/oer/oer-courses/it-systems
https://gitlab.com/oer/oer-courses/it-systems


Agenda

The short agenda of this presentation is as follows. After this introduction, we look at com-
puter memory in general, before we turn to Hack memory in particular.

2 Memory

In memory, our computers store data and instructions.

2.1 Sequential Circuits

� Previously, combinational circuits

� Output depends on input combinations

� Pure functions, e.g., Nand, ALU

Previously, we designed combinational circuits that compute functions of their input ar-
guments.

� Now, sequential circuits: Output depends on input combination, clock
signal, and state

� Calculations based on sequence of (previous) inputs

* Sequence triggered/synchronized by clock: one step or cycle per
clock tick

Now, with memory, we consider sequential circuits where the output depends not only on
the current input arguments but also on a clock signal and state, where the state itself may
depend on a sequence of previous inputs.

The clock generator of a processor generates pulses which synchronize the inner workings
of a computer, for modern CPUs typically measured at the rate, or frequency, of gigahertz.
With a rate of one gigahertz, a single CPU step takes one nanosecond, for a billion steps per
second. The steps are also called cycles.

� Memory chips, RAM, ROM

� Computer with RAM and CPU

We now look at the functionality of typical memory chips, which in combination with the
CPU form the major parts of computers.

2.2 Bit, Byte, Word

� Bit (b): Smallest unit, zero or one

� Word: CPU speci�c width for unit of processing

� Hack: 16 bits, more typical: 32 or 64 bits

� Byte (B): 8 bits, typical unit of addressing in modern CPUs

� But not in Hack architecture

* In Hack, addresses refer to 16-bit words, not to 8-bit bytes

� Byte can be understood as unsigned 8-bit integer

* Between 0 and 255

2



This slide lists terminology regarding bits, bytes, and words. We already saw the bit as
basic binary unit. Several bits are grouped into a word, whose size depends on the computer
architecture, with 16 bits forming a word in the Hack architecture and 32 or 64 bits as typical
sizes for modern processors.

Universally, a byte consists of 8 bits. Importantly, and as source of frequent confusion,
modern memory is addressed by bytes, while Hack memory is addressed by words. Thus, in
everyday memory, address 0 refers to the �rst byte, i.e., to the �rst 8 bits, while in Hack it
refers to the �rst word, i.e., the �rst 16 bits. Address 1 then refers to the second byte in
everyday memory, but to the second word in Hack. And so on.

2.2.1 Units for Memory

� Base 10 and base 2 for larger (or smaller) quantities

� Systeme international d'unites (SI)

* Pre�xes based on powers of 10

* �Normal�: kilo/k (103), mega/M (106), micro/µ (10−6), nano/n
(10−9), . . .

· 16 kB = 16,000 B (16 kilobytes)

� IEC (International Electrotechnical Commission)

* Pre�xes based on powers of 2

* �New�: kibi/Ki (1024), mebi/Mi (10242), gibi/Gi (10243), . . .

· 16 KiB = 16 · 1024 B = 16384 B (16 kibibytes)

� Typical convention

� For RAM (main memory), use powers of 2

� For disks (secondary memory), use powers of 10

You know typical units for large quantities from everyday life, e.g., a kilogram for 1000
grams. However, a kilobyte may mean di�erent things in di�erent contexts, either 1000 or
1024 bytes. To specify unambiguously what is meant, di�erent pre�xes exist that distinguish
units based on powers of 10 from those based on powers of 2. Thus, a kibibyte is the proper
way to talk about 1024 bytes.

Note that typically powers of 2 are used in the context of main memory (where bit strings
of a �xed size are used to address bytes in main memory, giving rise to powers of 2 naturally),
while powers of 10 are typical for secondary memory.

2.3 Memory Hierarchy

� Registers: Small memory, in CPU

3



Figure 1: �The memory hierarchy� Copyright (C) 2020 Dive into Systems, LLC
under CC BY-NC-ND 4.0; from Dive into Systems

� Each register stores a word

� Small, expensive, fast (< 1 ns access)

� RAM (main/primary memory): larger memory, on mainboard

� Think of array of registers

� Address input determines what register to access

* Byte-addressed in real RAM, word-addressed in Hack

* Read/write accesses possible in random order, at equal speed

� Still fast (100 ns access time)

� CPU caches: Hierarchy of memory devices

� Copy of recently used data between RAM and CPU

� Level 1, L1: closest, smallest, fastest (1 ns access)

� Level 2, L2: farther away, larger, slower (4 ns access)

� Secondary memory: Flash/solid-state disks (16 µs), traditional/hard
disks (several ms)

� Much larger and slower, persistent, cheap

(Source for numbers)
Memory of modern computers can be arranged in the hierarchy shown here, with registers

being the smallest, fastest, and most expensive pieces of memory that are directly embedded
into processors. Each register stores just one word but can be accessed within a single CPU
cycle as it is located directly inside the CPU.

RAM is considerably larger, e.g., on the order of gigabytes, but also about a factor of 100
slower. Thus, if a machine instruction requires access to data in main memory, that instruction
will be about a factor of 100 slower than a similar instruction with data in registers. In other
words, it might require 100 CPU cycles in contrast to 1 cycle. The reason for this slowdown
is that data needs to be fetched through a so-called bus from RAM, covering a relatively large
distance.

To amortize the cost of transferring data from RAM, recently accessed data is stored
in so-called cache memory, which is located directly on the CPU chip. Subsequent accesses

4

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://diveintosystems.org/book/C11-MemHierarchy/_images/MemoryHierarchy.png
https://colin-scott.github.io/personal_website/research/interactive_latency.html


to data in caches is much faster than access to RAM. Typically, several levels of caches of
increasing size and delay are located between CPU and RAM.

In addition to the memory types discussed so far, our computers usually also contain
secondary memory on di�erent types of disks or even on remote machines. Such memory is
persistent in the sense that it keeps its contents even when powered o�.

Note that in this hierarchy each level can be used as cache for memory below it: If data
is copied from a lower level into a higher level, subsequent accesses bene�t from the increased
speed of the higher level. As memory at higher levels is relatively small, one needs to select
carefully what to store. We will revisit this thought in the context of virtual memory for
operating systems.

3 Hack Memory

After these general thoughts on memory, let us now turn to speci�cs of the Hack computer.

3.1 Memory Chips

� Sequence of chips of increasing sizes

� Built-in DFF and Bit

* Single bit

� 16-bit Register for one word

� RAM8, RAM64, RAM512, RAM4K, RAM16K

Figure 2: Figure under CC0 1.0

* RAM chips of increasing sizes (8 words, 64 words, . . . )

· With inputs in, address, load; output out

· If load is 1, store in at address; otherwise, keep state

· Output current contents at address as out

* RAM16K: 214 = 16384 words

Memory for the Hack computer can be built in a sequence of chips in Project 3 of Nand
to Tetris, starting from a single bit over registers to larger chips. We skip that project.

What you need to understand, though, is the following:
RAM chips can be understood as arrays of registers, where an address input selects the

particular register whose contents should be read or written. The number of address bits
determines the size of the chip, e.g., 14-bit addresses for a chip with 16384 registers.

Each memory chip has a load bit, which speci�es whether the current input should be
stored as new contents for the addressed register or not.

5

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/ram16k.tex
https://creativecommons.org/publicdomain/zero/1.0/


3.2 Hack ROM

� Nand to Tetris with built-in chip ROM32K

Figure 3: Figure under CC0 1.0

� Input address[15]

� Output out[16]

� (215 = 32768 words)

� Output current contents at address as out

� Only reading, contents written upon fabrication

� (Later: ROM initialized with instructions when program is loaded)

Nand to Tetris comes with a builtin ROM chip, whose details you can see here. Di�erently
from RAM, it only has an address input as its contents cannot be changed programmatically.

3.3 Hack PC

� Recall: Program Counter (PC) holds address of next machine instruction
to execute

Figure 4: Figure under CC0 1.0

� Inputs

* in[16],

* Control bits: reset, load, inc

� Output out[16]

� Output current register contents as out

� Logic

6

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/rom32k.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/pc.tex
https://creativecommons.org/publicdomain/zero/1.0/


if reset then store 0

elif load then store in

elif inc then increment stored value

else keep state

The program counter, which will be embedded into the Hack CPU, is shown here. Essen-
tially, it is a register that stores a counter value with functionality based on 3 control bits: It
is possible to reset the counter to 0, to load a new value, to increment the current counter,
or to keep the current state.

4 Conclusions

Let us conclude.

4.1 Summary

� Memory organized in hierarchy of levels

� Considerable di�erences regarding size, speed, cost

� From registers over caches to RAM and secondary storage

* Registers located inside CPU, including the program counter

� RAM can be understood as array of registers

� RAM is byte-addressed in real hardware, word-addressed in Hack

Memory organization is structured in a hierarchy of levels, each exhibiting considerable
disparities in size, speed, and cost. This hierarchy ranges from registers, including the program
counter, built into the CPU, to caches, RAM, and secondary storage. RAM can be understood
as array of registers. It is addressed by bytes in real hardware, but by words in the Hack
architecture.

4.2 Self-Study

� Play with RAM16K and PC in Hardware Simulator

7



Figure 5: Figure under GPLv2

� (Use built-in chips)

� Note

* Area for RAM contents

* For RAM16K, address enumerates 16-bit words, neither bits nor
bytes

Please take a break and experiment with the builtin chips for RAM and program counter
in the Hardware Simulator.

� How large is RAM16K in bits, bytes, words, KiB?

Also recall the vocabulary regarding memory sizes.

Bibliography

Nisan, Noam, and Shimon Schocken. 2005. The Elements of Computing Sys-

tems: Building a Modern Computer from First Principles. The MIT Press.
https://www.nand2tetris.org/.
The bibliography contains references used in this presentation.

License Information

Source �les are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

8

https://gitlab.com/oer/figures/-/blob/main/screenshots/2024-04-18-Hardware-Simulator-RAM16K.png
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.nand2tetris.org/
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Except where otherwise noted, the work �Hack Memory�,© 2024 Jens Lecht-
enbörger, is published under the Creative Commons license CC BY-SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting
license terms.

9

https://lechten.gitlab.io/#me
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Today’s Core Question
	Retrieval Practice
	Learning Objectives

	Memory
	Sequential Circuits
	Bit, Byte, Word
	Units for Memory

	Memory Hierarchy

	Hack Memory
	Memory Chips
	Hack ROM
	Hack PC

	Conclusions
	Summary
	Self-Study


