Hack Memory 2

IT Systems, Summer Term 2026
Dr. Matthes Elstermann

Our next ambitious goal lies in the definition of a machine language for the Hack platform. Before we approach that goal, we
take a brief look at memory in Hack. In this course, we do not build memory chips ourselves, but we take them for granted and
only look at their functionality.

1 Introduction

Let us begin with a brief look at the core of our topic and its learning objectives.

1.1 Today’s Core Question
e What are bits, bytes, words, registers, RAM, ROM?

¢ Based on Chapter 3 of (Nisan and Schocken 2005)
e (We skip Project 3)
This presentation introduces basic terminology related to main memory in computers, in particular bits, bytes, words, registers,

RAM, and ROM.
However, Project 3 is not part of our course. Thus, we do not build memory chips but take them for granted.

1.2 Retrieval Practice
e Recall the Hack computer architecture preview

e What types of memory exist in Hack for what purposes?
e How do memory, ALU, and PC interact?

Please take a brief break and recall how the Hack computer architecture looks like, with its types of memory, the ALU as active
component, and the program counter as pointer for the next instruction to execute.

1.3 Learning Objectives
e Explain memory hierarchy
e Explain functionality of RAM, ROM, PC
¢ In particular for Hack chips
e Convert memory sizes (bits, bytes, larger sizes)
Please think about the learning objectives for this presentation. Which ones did you achieve already, maybe based on skills

outside this course?
Missing ones are covered subsequently.

Agenda

The short agenda of this presentation is as follows. After this introduction, we look at computer memory in general, before we turn
to memory in our Hack computer.

2 Memory

In memory, our computers store data and instructions.

IThis PDF document is an inferior version of an OER in HTML format; free/libre Org mode source repository.
2Material created by Jens Lechtenbérger; see end of document for license information.

https://oer.gitlab.io/oer-courses/it-systems/05-Hack-Memory.html
https://gitlab.com/oer/oer-courses/it-systems

2.1 Sequential Circuits
e Previously, combinational circuits

¢ Qutput depends on input combinations
¢ Pure functions, e.g., Nand, ALU

Previously, we designed combinational circuits that compute functions of their input arguments.
e Now, sequential circuits: Output depends on input combination, clock signal, and state

e Calculations based on sequence of (previous) inputs
e Sequence triggered/synchronized by clock: one step or cycle per clock tick

Now, with memory, we consider sequential circuits where the output depends not only on the current input arguments but also
on a clock signal and state, where the state itself may depend on a sequence of previous inputs.

The clock of a processor generates pulses which synchronize the inner workings of a computer, for modern CPUs typically
measured at the rate, or frequency, of gigahertz. With a rate of one gigahertz, a single CPU step takes one nanosecond, for a billion
steps per second. The steps are also called cycles.

e Memory chips, RAM, ROM
e Computer with RAM and CPU

We now look at the functionality of typical memory chips, which in combination with the CPU form the major parts of
computers.

2.2 Bit, Byte, Word
e Bit (b): Smallest unit, zero or one
e Word: CPU specific width for unit of processing
e Hack: 16 bits, more typical: 32 or 64 bits
e Byte (B): 8 bits, typical unit of addressing in modern CPUs

¢ But not in Hack architecture

e In Hack, addresses refer to 16-bit words, not to 8-bit bytes
e Byte can be understood as unsigned 8-bit integer

e Between 0 and 255

This slide lists terminology regarding bits, bytes, and words. We already saw the bit as basic binary unit. Several bits are
grouped into a word, whose size depends on the computer architecture, with 16 bits forming a word in the Hack architecture and
32 or 64 bits as typical sizes for modern processors.

Universally, a byte consists of 8 bits. Importantly, and as source of frequent confusion, modern memory is addressed by bytes,
while Hack memory is addressed by words. Thus, in everyday memory, address 0 refers to the first byte, i.e., to the first 8 bits,
while in Hack it refers to the first word, i.e., the first 16 bits. Address 1 then refers to the second byte in everyday memory, but to
the second word in Hack. And so on.

2.2.1 Units for Memory
e Base 10 and base 2 for larger (or smaller) quantities

e Systeme international d’unites (SI)
¢ Prefixes based on powers of 10
e “Normal™ kilo/k (10%), mega/M (10%), micro/p (1075), nano/n (1079), ...
. 16 kB = 16,000 B (16 kilobytes)
e JEC (International Electrotechnical Commission)
¢ Prefixes based on powers of 2
o “New”: kibi/Ki (1024), mebi/Mi (10242), gibi/Gi (10243), ...
- 16 KiB = 16 - 1024 B = 16384 B (16 kibibytes)

e Typical convention

e For RAM (main memory), use powers of 2
¢ For disks (secondary memory), use powers of 10

You know typical units for large quantities from everyday life, e.g., a kilogram for 1000 grams. However, a kilobyte may mean
different things in different contexts, either 1000 or 1024 bytes. To specify unambiguously what is meant, different prefixes exist
that distinguish units based on powers of 10 from those based on powers of 2. Thus, a kibibyte is the proper way to talk about
1024 bytes.

Note that typically powers of 2 are used in the context of main memory (where bit strings of a fixed size are used to address
bytes in main memory, giving rise to powers of 2 naturally), while powers of 10 are typical for secondary memory.

2.3 Memory Hierarchy
e Registers: Small memory, in CPU

1 cycle
Registers On CPU o
rimary
~ Storage
Caches 10 cycles g
Faster Access,
Higher Cost ~
Main Memory 100 cycles _
Slower Access,
Lower Cost . ~1 M cycles
Flash Disk
~10 M cycles :te(::)aniary
Traditional Disk g
Remote Secondary Storage (e.g., Internet)

The Memory Hierarchy

Storage Capacity

Figure 1: “The memory hierarchy” Copyright (C) 2020 Dive into Systems, LLC under CC BY-NC-ND 4.0; from
Dive into Systems

e FEach register stores a word

e Small, expensive, fast (< 1 ns access)

¢ RAM (main/primary memory): larger memory, on mainboard

e Think of array of registers
e Address input determines what register to access

e Byte-addressed in real RAM, word-addressed in Hack
e Read/write accesses possible in random order, at equal speed

e Still fast (100 ns access time)
e CPU caches: Hierarchy of memory devices

¢ Copy of recently used data between RAM and CPU
e Level 1, L1: closest, smallest, fastest (1 ns access)

e Level 2, L2: farther away, larger, slower (4 ns access)
e Secondary memory: Flash/solid-state disks (16 us), traditional /hard disks (several ms)

e Much larger and slower, persistent, cheap

(Source for numbers)

Memory of modern computers can be arranged in the hierarchy shown here, with registers being the smallest, fastest, and most
expensive pieces of memory that are directly embedded into processors. Each register stores just one word but can be accessed
within a single CPU cycle as it is located directly inside the CPU.

RAM is considerably larger, e.g., on the order of gigabytes, but also about a factor of 100 slower. Thus, if a machine instruction
requires access to data in main memory, that instruction will be about a factor of 100 slower than a similar instruction with data in
registers. In other words, it might require 100 CPU cycles in contrast to 1 cycle. The reason for this slowdown is that data needs
to be fetched through a so-called bus from RAM, covering a relatively large distance.

To amortize the cost of transferring data from RAM, recently accessed data is stored in so-called cache memory, which is
located directly on the CPU chip. Subsequent accesses to data in caches is much faster than access to RAM. Typically, several
levels of caches of increasing size and delay are located between CPU and RAM.

In addition to the memory types discussed so far, our computers usually also contain secondary memory on different types of
disks or even on remote machines. Such memory is persistent in the sense that it keeps its contents even when powered off.

Note that in this hierarchy each level can be used as cache for memory below it: If data is copied from a lower level into a
higher level, subsequent accesses benefit from the increased speed of the higher level. As memory at higher levels is relatively small,
one needs to select carefully what to store. We will revisit this thought in the context of virtual memory for operating systems.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://diveintosystems.org/book/C11-MemHierarchy/_images/MemoryHierarchy.png
https://colin-scott.github.io/personal_website/research/interactive_latency.html

3 Hack Memory

After these general thoughts on memory, let us now turn to specifics of the Hack computer.

3.1 Memory Chips
e Sequence of chips of increasing sizes
e Built-in DFF and Bit
e Single bit
¢ 16-bit Register for one word
e RAM8, RAM64, RAM512, RAM4K, RAM16K

RAM16K
16 Register0
in[16] | Registerl
address[14] — Register2 —— out[16]
load —
Register16383

Figure 2: Figure under CCO 1.0

e RAM chips of increasing sizes (8 words, 64 words, ...)
« With inputs in, address, load; output out
o If load is 1, store in at address; otherwise, keep state
o Output current contents at address as out

e RAM16K: 2! = 16384 words

Memory for the Hack computer can be built in a sequence of chips in Project 3 of Nand2Tetris, starting from a single bit over
registers to larger chips. We skip that project.

What you need to understand, though, is the following:

RAM chips can be understood as arrays of registers, where an address input selects the particular register whose contents
should be read or written. The number of address bits determines the size of the chip, e.g., 14-bit addresses for a chip with 16384

registers.
Each memory chip has a load bit, which specifies whether the current input should be stored as new contents for the addressed

register or not.

3.2 Hack ROM
e Nand2Tetris with built-in chip ROM32K

ROM32K
Register0

Registerl
address[15] —» Register2 —— out[16]

Register32767

Figure 3: Figure under CCO 1.0

e Input address[15]
e Qutput out [16]
e (21° = 32768 words)

e Qutput current contents at address as out

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/ram16k.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/rom32k.tex
https://creativecommons.org/publicdomain/zero/1.0/

¢ Only reading, contents written upon fabrication

e (Later: ROM initialized with instructions when program is loaded)

Nand2Tetris comes with a builtin ROM chip, whose details you can see here. Differently from RAM, it only has an address
input as its contents cannot be changed programmatically.

3.3 Hack PC

e Recall: Program Counter (PC) holds address of next machine instruction to execute
PC
in[16] ——
reset ——» ' — out[16]
Register
load ——
inc —

Figure 4: Figure under CCO 1.0

e Inputs

e in[16],

e Control bits: reset, load, inc
e Qutput out [16]

e Output current register contents as out
¢ Logic

if reset then store 0O
elif load then store in
elif inc then increment stored value
else keep state
The program counter, which will be embedded into the Hack CPU, is shown here. Essentially, it is a register that stores a

counter value with functionality based on 3 control bits: It is possible to reset the counter to 0, to load a new value, to increment
the current counter, or to keep the current state.

4 Conclusions

Let us conclude.

4.1 Summary
e Memory organized in hierarchy of levels
e Considerable differences regarding size, speed, cost

e From registers over caches to RAM and secondary storage
¢ Registers located inside CPU, including the program counter

e RAM can be understood as array of registers

e RAM is byte-addressed in real hardware, word-addressed in Hack
e Outlook

e CPU includes registers

e Computer includes registers, RAM, ROM

Memory organization is structured in a hierarchy of levels, each exhibiting considerable disparities in size, speed, and cost.

This hierarchy ranges from registers, including the program counter, built into the CPU, to caches, RAM, and secondary storage.
RAM can be understood as array of registers. It is addressed by bytes in real hardware, but by words in the Hack architecture.

You will see how to build the CPU from ALU, registers, and program counter as well as the entire computer from CPU and
memory in a later presentation.

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/pc.tex
https://creativecommons.org/publicdomain/zero/1.0/

4.2 Self-Study

e Play with RAM16K and PC in Hardware Simulator

File View Run Help

m oD L

= =} = animate: Format:
? Slow Fast |Programflow |w|[Decimall:

Chip Na... RAMI16K (Clocked) Time : 1
Input pins Output pins
MName Value MName Value
in[16] 42 out[16] 42
load 1
address[14] 3
RAM 16K: 0 &8
HDL i’ g -
// This file 1s part of www.nand=| 2 al |
// and the book "The Elements of 3 a2
// by Nisan and Schocken, MIT Pr a o
/f File name: tools/builtIn/RAMI 5 o
r B o|~]
Jf**
* Memory of 16K registers, each
* The chip facilitates read ang |
* Read: out(t) = RAMLEK[acg
* Write: If load(t-1) then

Figure 5: Figure under GPLv2

¢ (Use built-in chips)
e Note
e Area for RAM contents
e For RAM16K, address enumerates 16-bit words, neither bits nor bytes

Please take a break and experiment with the builtin chips for RAM and program counter in the Hardware Simulator.
e How large is RAM16K in bits, bytes, words, KiB?

Also recall the vocabulary regarding memory sizes.

Bibliography

Nisan, Noam, and Shimon Schocken. 2005. The Elements of Computing Systems: Building a Modern Computer
from First Principles. The MIT Press. https://www.nand2tetris.org/.

The bibliography contains references used in this presentation.

License Information

Source files are available on GitLab (check out embedded submodules) under free licenses. Icons of custom
controls are by @fontawesome, released under CC BY 4.0.

Except where otherwise noted, the work “Hack Memory”, (©) 2024-2026 Jens Lechtenbérger, is published
under the Creative Commons license CC BY-SA 4.0.
This presentation is distributed as Open Educational Resource under freedom granting license terms.

Source files are available on GitLab, where the author would be happy about contributions, e.g., in terms of issues and merge
requests.

https://gitlab.com/oer/figures/-/blob/main/screenshots/2024-04-18-Hardware-Simulator-RAM16K.png
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.nand2tetris.org/
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Today’s Core Question
	Retrieval Practice
	Learning Objectives

	Memory
	Sequential Circuits
	Bit, Byte, Word
	Units for Memory

	Memory Hierarchy

	Hack Memory
	Memory Chips
	Hack ROM
	Hack PC

	Conclusions
	Summary
	Self-Study

