Combinational Circuits IT 2

IT Systems, Summer Term 2026
Dr. Matthes Elstermann

This is the second presentation on combinational circuits.

1 Introduction

e Part 1

e Introduction
e Addition
e 2’s Complement

¢ Building an Adder Chip
e Break for self-study
e Part 2

e Hack ALU
e Project 2

e Conclusions

In part 1, basics of addition were introduced.
In part 2, we discuss the Hack ALU, which is the major part of Project 2.

2 Hack ALU

The Hack ALU will be the brain for our Hack Computer. Let us see what is involved.

2.1 ALU Design
e Arithmetic Logic Unit (ALU)

e Computes fixed set of functions
e Arithmetic functions, e.g., x + y, x -y, x + 1
e Logical functions, e.g., or(x, y), and(x, y)

e Specific function determined by control bits

¢ Programming the ALU means setting the control bits
An ALU is able to compute a fixed set of functions, in particular arithmetic functions, such as addition and subtraction, and
logical functions.

At any point in time, a number of control bits determine what the ALU is supposed to do. If we want to program our ALU,
we have to make sure to set the correct control bits for our purposes.

2.2 Hack ALU Overview

e Pins

IThis PDF document is an inferior version of an OER in HTML format; free/libre Org mode source repository.
2Material created by Jens Lechtenbérger; see end of document for license information.


https://oer.gitlab.io/oer-courses/it-systems/04-Combinational-Circuits-II.html
https://gitlab.com/oer/oer-courses/it-systems

Arithmetic
x[16] Logic
> Unit out[16]
y[16] (ALU)

Figure 1: Figure under CCO 1.0

e Two 16-bit input numbers
e One 16-bit output number
e And two output bits
« Is output zero (zr)?
- Is output negative (ng)?
e Six control bits

e For 26 possible operations; 18 actually specified in (Nisan and Schocken 2005)
e Important symbols in ALU context

 Arithmetic operations: x+y, x-y, -x

« Logical operations: x&y (and), x|y (or), x (not)

« Thus, “4” denotes addition, not the logical Or

The Hack ALU operates on two 16-bit inputs and produces a 16-bit output as well as two output bits. The output bits simply
indicate whether the 16-bit output is zero or negative.

The ALU’s operation is determined by 6 control bits, for a total of 32 possible operations. Out of those 32 operations only a
subset of 18 operations are documented in our textbook.

Importantly, in the ALU context, we use the plus and minus symbols for addition, subtraction, and negative numbers. In
contrast, ampersand, vertical bar, and exclamation mark denote logical operations. See also the next slides.

2.3 Hack ALU Operations

e Bit-wise logical operations on 16-bit numbers, e.g.:

e And16: 1010101010101010 & 0000000011111111 = 0000000010101010
e Not16: 11010101010101010 = 0101010101010101
e Negate/invert /flip all bits

e Add16: Addition of 16-bit numbers x and y (in 2’s complement)

Here you see typical operations of the Hack ALU, which point at chips that might be used as parts. As we will see shortly,
other operations can be reduced to the ones shown here.

2.4 Subtraction by Negation in ALU Context
e -x has no special meaning: -x = (-1)*x

e Using 2’s complement


https://gitlab.com/oer/figures/-/blob/main/gates/tikz/alu.tex
https://creativecommons.org/publicdomain/zero/1.0/

Subsequently, the minus sign is used for subtraction and negative numbers as usual.

e !x is bit-wise negation of x (see previous slide)

e In the following, “negate” means “flip all bits”
e Fact: Ix = -x - 1 (in 2’s complement)
e Proof:
o Ix +x =1...1 (all bits 1, as each bit that is 1 in x is 0 in !x and vice versa) = -1
+ Subtract x on both sides

As already explained, the exclamation mark indicates the negation of a number by flipping all its bits. You see here that flipping
all bits turns x into -x - 1. Please take note of this fact.

e Fact: x-y =I(Ix +y)
e Proof: I(Ix +y) =-(x-1+y)-1=x-y

As shown here, by using negation twice we can express subtraction.

2.5 Hack ALU Chip

ZX = zero X

nx = negate x zx nx zyny f no
zZy = zero y

ny = negate y J J L LJ
f = apply function, either add or and

no = negate output

_ t Arithmetic
zr = out zero x[16] Logic
ng = out negative > Unit out[16]
16
y[16] (ALU)

Figure 2: (“Hack ALU” under CCO 1.0; from GitLab)

The control and output bits of the ALU have specific meanings, which are spelled out here and defined on the next slide.

2.6 Hack ALU Specification

* [Excerpt of ALU.hdl from Nand2Tetris]

* Computes out = one of the following functions:

* 0,1, -1, x, y, 'x, 'y, -x, -y,

* x+1,y+1,x-1,y-1,x+y,x -y, 75 - X,
* x&y, x|y

* [...]

// Implementation: Manipulates the x and y inputs
// and operates on the resulting values, as follows:

// if (zx == 1) sets x = 0 // 16-bit constant

// if (nx == 1) sets x = Ix // bitwise not

// if (zy == 1) sets y = 0 // 16-bit constant

// if (ny == 1) sets y = !y // bitwise not

// if (f == 1) sets out = x +y // integer 2’s complement addition
// if (f == 0) sets out = x & y // bitwise and

// if (no == 1) sets out = !'out // bitwise not

This excerpt of the HDL file for the ALU defines its operations and control bits.

Importantly, in the specification with if statements, the order matters: Those statements are processed from top to bottom.
First, if the zero bit of an input is 1, replace that input with the constant 0. Afterwards, if the negate bit for that input is 1, negate
the bits of the value obtained so far. In particular, if both bits are set, first set the input to 0, then negate its bits, leading to the
value of 16 1s, which is -1 in 2’s complement. This happens for both inputs.


https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/alu.tex

Subsequently, depending on the function bit, either add both values, or combine their bits with logical And.

The final output value is determined by the negate output bit: If that bit is 0, the value computed so far is the final output.
Otherwise, negate the bits obtained so far to produce the final output.

Besides, as mentioned already, two additional output bits indicate whether the computed output is zero or whether it is negative.

2.7 ALU Logic Examples
e Table in Figure 2.6 of (Nisan and Schocken 2005) documents ALU control bits
e Let us look at some rows of that table

Out textbook documents which control bits implement what ALU functions. Let us look at some examples.

2.7.1 Row 14, x-}y

zx nx zy ny f no out
0O 0 0 0 1 0 xty

e zx=nx=zy=ny=0: Neither zero nor negate inputs
e f=1: Perform addition
e 1n10o=0: Do not negate output
Let us start with a simple example, where only the function bit is 1. In that case, the inputs are used as they are, without any
zeroing or negation. According to the Hack ALU Specification, a function bit of 1 leads to an addition. As the negate output bit

is not set, the resulting sum of x and y is the final output.
Note how a row with all Os would similarly compute the logical And.

2.7.2 Row 15, x-y

zx nx zy ny f no out
0 1 0 0 1 1 xvy

e As explained previously: x -y = I(Ix + y)
e Thus

¢ zx=0, nx=1: Negate x

e zy=0, ny=0: Keep y unchanged
f=1: Add

no=1: Negate result

e Self-study: How to implement logical Or? (De Morgan!)

We observed previously how to subtract y from x by suitable use of negation and addition. The row here implements that
insight.

Please try to come up with bits that implement the logical Or operation. Towards that goal, recall the De Morgan rules, which
involve negation to transform between logical Or and And.

If you are not sure, verify your result in our textbook.

2.7.3 Row 5,y

zx nx zy ny f no out
1 1 0 0 0 0 vy

e zx—1, nx—=1: Zero, then negate x: x — 00...0 — 11...1
e zy=0, ny=0: Keep y unchanged

f—0: Perform bit-wise And

e All 1s of zero-negated x preserve y
e no—0: Keep result

In this case, we just want to keep the input y. We can do so as follows: Zero and negate x to replace x with all 1s. Then, use
y in unchanged form. Finally, apply bitwise And, which preserves all bits of y.



2.74 Row 2,1

zx nx zy ny f no out
1 1 1 1 1 1 1

e zx=1, nx=1: Zero, then negate x: x — 00...0 — 11...1
e All bits one is -1 in 2’s complement

e zy=1, ny=1: Zero, then negate y: y — 00...0 — 11...1
e All bits one is -1 in 2’s complement

o f=1: Add
o (1) 4 (-1)=-2=1...10

e no=1: Negate output, 0...01 =1

The ALU can also produce some constants. Here, you see how to produce 1.

2.7.5 Row 10, x+1

zx nx zy ny f no out
0o 1 1 1 1 1 x+1

e zx=0, nx=1: Negate x, !x
e zy=1, ny=1: Zero, then negate y, -1
o f=1: Add

o Ix+ (-1) =Ix-1

e Since Ix = x-1,wehave Ix-1=-x-1-1=-x-2
e no=1: Negate output, !(-x-2) =-(x-2)-1=x+1

The implementation of an increment operation is shown here. It is surprisingly complex.

2.7.6 Self-Study

zx nx zy ny f no out
o 1 0 1 1 1 7

What operation is performed by the Hack ALU for the above control bits?

Based on the previous explanations, determine what the Hack ALU does in the case shown here. Note that this operation is
not among the officially documented ones.

As a hint, you can invoke ALU functions in the hardware simulator: Just load the ALU from the builtin directory, set the
control bits and try out some input values.

3 Project 2
e Build

¢ Adders, in particular Add16
o ALU

e Incl6, an incrementer

As part of Project 2, you build adders, the ALU, and an incrementer, which just adds 1 to an input number.



3.1 Notes on ALU

e What parts to use? How?

e (Clearly, use Add16, And16 to implement main functions
e Process x and y in parallel for zeroing and negation
e At least 2 chips Not16
e Use at least one Mux16 for each if statement, e.g.:
e Initially, use zx: Mux16(a=x, b=false, sel=zx, out=zeroX);
« (Note next slide for b=false)
e Finally, use f: Mux16 (a=xAndY, b=xPlusY, sel=f, out=x0pY);
« (In between, how would you compute xAndY and xPlusY?)

The bullet points here are meant to get you started with the ALU.

3.2 HDL Tips

e If you need constant numbers, use true and false, e.g.:

e a = false and a[0..15] = false assign 0 to a

® a[0] = true, a[l..15] = false assigns 1 to a
e You can give names to parts of a word, e.g.:

e out[0..7] = outlow

e Then use outlow elsewhere as input
e The chip’s output out cannot be used as input in the same chip

e Assign new names if that should be necessary, e.g.:

e out = out, out = othername

e Then use othername elsewhere as input

This slide lists some tips regarding HDL. Note that our textbook contains an appendix on that language.

4 Conclusions

Let us conclude.

4.1 Summary

e Binary adders from half and full adders

e Use 2’s complement for negative numbers and subtraction

¢ Ripple-carry adder for any number of bits
e Hack ALU uses 6 control bits to specify operation

e Simple operations, e.g., no multiplication

e Build it as part of Project 2!

We now know how to represent signed 16-bit numbers using 2’s complement, and how to add and subtract such numbers.
In particular, ripple-carry adders work by chaining a fixed number of single bit adders to simulate a pen and paper method for
addition of numbers.

The Hack ALU provides simple arithmetical and logical operations, which are controlled by 6 bits. Your task is to build it as
part of Project 2.



4.2 Q&A

e Please ask questions and provide feedback on a regular basis

e Something confusing?

¢ What did you understand? Where did you get lost?
e Maybe suggest improvements on GitLab

¢ Did you create exercises, experiments, explanations?

e Use Learnweb: Shared, anonymous pad and MoodleOverflow

This slide is a copy of an earlier one. It serves as reminder that I am happy to obtain and provide feedback.

Bibliography

Nisan, Noam, and Shimon Schocken. 2005. The Elements of Computing Systems: Building a Modern Computer

from First Principles. The MIT Press. https://www.nand2tetris.org/.
The bibliography contains references used in this presentation.

License Information

Source files are available on GitLab (check out embedded submodules) under free licenses. Icons of custom
controls are by @fontawesome, released under CC BY 4.0.

Except where otherwise noted, the work “Combinational Circuits II”, () 2024-2025 Jens Lechtenbdorger, is
published under the Creative Commons license CC BY-SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting license terms.
Source files are available on GitLab, where the author would be happy about contributions, e.g., in terms of issues and merge
requests.


https://gitlab.com/oer/oer-courses/it-systems
https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=91088
https://www.nand2tetris.org/
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Hack ALU
	ALU Design
	Hack ALU Overview
	Hack ALU Operations
	Subtraction by Negation in ALU Context
	Hack ALU Chip
	Hack ALU Specification
	ALU Logic Examples
	Row 14, x+y
	Row 15, x-y
	Row 5, y
	Row 2, 1
	Row 10, x+1
	Self-Study


	Project 2
	Notes on ALU
	HDL Tips

	Conclusions
	Summary
	Q&A


