Combinational Circuits I 12

IT Systems, Summer Term 2026
Dr. Matthes Elstermann

After having built simple gates and chips, we now look at combinational circuits to perform arithmetic and logical operations
on integer numbers. In such circuits, the output is purely dependent on the input combinations.

Next to such circuits, sequential circuits exists as well, where the output depends not only on the current inputs but also on
some previous state or memory.

The topic of combinational circuits is covered in two presentations, of which this is the first one.

1 Introduction

Let us begin with a brief look at the core of our topic and its learning objectives, followed by a recap.

1.1 Today’s Core Question
e How can we perform arithmetic and logic operations on integer numbers, starting from Boolean logic?

e Based on Chapter 2 of (Nisan and Schocken 2005)

Our goal is to perform arithmetic and logic operations on integer numbers, starting from Boolean logic.

1.2 Learning Objectives

e Compute 2’s complement of a binary number and use it for addition and subtraction

e Build, test, and analyze combinational circuits leading to the Hack ALU (Project 2)
e Half and full adder, Ripple-Carry Adder (Add16)

e Incrementer (Inc16)

e ALU
e Determine ALU operation based on control bits
You will learn how to add and subtract binary numbers. Notably, you learn to compute the 2’s complement of a positive number
to represent the negative of that number. Afterwards, you can compute addition and subtraction using traditional addition, where
we add digit by digit.

You implement combinational circuits for such operations, in particular the ALU of our Hack computer. For the ALU you will
then be able to determine its computation based on given control bits.

1.3 Retrieval Practice

e Prior knowledge

¢ How do you add two numbers with pen and paper, say 4242 + 67897

Please take a brief break and add two decimal numbers here. Quite likely, in elementary school you learned how to do so with
pen and paper, writing the numbers underneath each other and adding them digit by digit.

e What is 101010 in decimal?
Convert the shown binary number to decimal.
e What is a multi-bit chip?

Recall what a multi-bit chip is.

I This PDF document is an inferior version of an OER in HTML format; free/libre Org mode source repository.
2Material created by Jens Lechtenbdrger; see end of document for license information.

https://oer.gitlab.io/oer-courses/it-systems/04-Combinational-Circuits-I.html
https://gitlab.com/oer/oer-courses/it-systems

Agenda
o Part 1

Introduction

Addition

2’s Complement
Building an Adder Chip

e Break for self-study

e Part 2
e Hack ALU
® Project 2

e Conclusions
The material for combinational circuits is as follows.
After this introduction, we discuss the addition of binary numbers: We present 2’s complement to represent signed binary
numbers of a fixed length. Based on this background, we delve into the implementation of adder chips.

Then, you might want to take a break and apply covered techniques.
Afterwards, in part 2, we look at the Hack ALU, which is the major part of Project 2 of Nand2Tetris.

2 Addition

Let us analyze addition.

2.1 Pen-and-paper method
We add digits from right to left, possibly with “carry”

e In decimal e Note
4949 e Rightmost (lowest) position with carry 0
+ 6789 ¢ Only need to add 2 bits
Carry: 11110 e Other positions need to add 3 bits
11031 For the rightmost position, we just need to add two digits,

while other positions may have a nonzero carry. Such a carry

. needs to be added as third digit.
e In binary

e Both sample results are 1 digit larger than the
10110111 inputs

+ 11000101
Carry: 100000110

The result of an addition might need more digits than its
101111100 . . .
inputs. If we use a fixed number of digits, the result might
be too large to be represented. Then, an overflow occurs,
and the result is incorrect. We expand on that thought
next.

e Overflow in case of fixed digits/bits; incorrect
result if discarded

This slide shows how to add numbers digit by digit from right
to left. Please verify the calculations and convince yourself that
the method works for numbers of any base. Subsequently, we
are interested in base 2 for binary numbers.

2.2 Adding with fixed bits

e Binary addition of previous slide

e 10110111 + 11000101 = 101111100 (= 380)
e Suppose restriction to 8 bits

e Largest number is 28 — 1 = 255

e 8-bit-result (drop leading 1 and 0): 1111100 (= 124)
 Incorrect, overflow, bug
« Examples at Wikipedia

https://en.wikipedia.org/wiki/Integer_overflow#Examples

Here you see how the result of our calculation would be incorrect if numbers were restricted to 8 bits. In general, it is the
programmer’s responsibility to be aware of potential size limitations and to check for overflows; otherwise, the program would be

buggy.
See Wikipedia for examples if you are interested. Note that the icon of the hyperlink here indicates that this link goes beyond
class topics.

e Insight (recall Fail task)

e Restricting to n bits corresponds to Modulo operation
e mod 2"

e n =8: 10110111 + 11000101 = 1111100 mod 256

Please convince yourself that restricting a number to n bits is the same as computing the modulo operation with 2.
Note that in this case, the icon of the hyperlink indicates essential information. Thus, please follow such links if you cannot
explain their topics.

3 2’s Complement

2’s complement is one popular way to define negative numbers.

3.1 Definitions
e Consider n-bit number k

e k., =2" —kis 2’s complement of k (and vice versa)
Given an n-bit number k, we say that 2™ - k is the 2’s complement of k.
e Note: K+ k. =2" =0 mod 2", i.e., complementary numbers add up to zero
e E.g.,n=4,2*=16: 1 and 15 are complements of each other; 8 is complement of itself

In other words, 2’s complement defines n-bit numbers to be complements of each other if their sum is 2.
Again in other words, their sum is 0 modulo 2.
E.g., with 4 bits, 1 and 15 are complements of each other as they add up to 16.

o If most significant bit of k is 0, interpret as (usual) positive number
e If most significant bit is 1, interpret bit pattern as negative number: k = —k,
e E.g.,15=(1111)9 and 8 = (1000), are interpreted as negative numbers under 2’s complement: (1111); =
—1 and (1000); = —8

Recall that the leading bit of a number is the most significant one. If the most significant bit of a number is 0, we interpret
the bit pattern as ordinary, positive binary number.

If the most significant bit of a number is 1, we interpret the bit pattern as negative number under 2’s complement. Namely,
we interpret such a bit pattern as negative of its complement. This interpretation makes sense as both numbers (in the usual
interpretation) add up to 0 as remarked above.

You see examples here.
3.2 Example and Conversion

e 2" signed numbers between —2"~! and 27! — 1

Under this interpretation, with n bits we represent 2™ signed numbers in the range shown here.

e Eg,.n=4 e Note
0 0000 e Positive numbers start with 0
1 0001 1111 -1 + Usual binary number
2 0010 1110 -2 . .
3 0011 1101 -3 e Negative numbers start with 1
4 0100 1100 -4 e To convert a number
5 o101 1011 -5 « Leave all trailing 0’s and first 1 intact, flip all
6 0110 1010 -6 remaining bits or
7oooni 1001 -7 + Flip all bits and add 1
1000 -8

Thus, positive numbers start with 0 and are our usual binary
E.g., with 4 bits under 2’s complement, these numbers arise. pumbers. In contrast, negative numbers start with 1. To convert

a number, two methods are shown here.

Maybe the second method is easier to remember: Flip all bits

and add 1. Please try this out on your own.

https://en.wikipedia.org/wiki/Modulo

3.3 Addition with 2’s Complement
e We just add bit patterns, mod 2"

¢ No need to treat negative numbers specially

e Subtraction as addition with 2’s complement

e Example
2-5 =2 + (-b): 0010
+ 1011
1101 = -3

e In Hack, overflows will be ignored
e Programming bug
Thanks to the design of 2’s complement, when adding numbers, we do not need to watch out for the sign. We can just add
numbers bit by bit, and subtraction arises automatically when adding a negative number.
An example is shown here.
Importantly, overflows can occur. If that happens, our Hack hardware will silently ignore this. As mentioned earlier, it is the

programmer’s task to avoid such bugs. In fact, other hardware may have methods to signal overflows, and as an exercise we could
also add an overflow output to the Hack ALU.

4 Building an Adder Chip

e Sequence of chips

e Increasing complexity

1. HalfAdder: Adds two bits, produces two output bits
2. FullAdder: Adds three bits, produces two output bits
3. Ripple-Carry-Adder, Add16: Adds two 16-bit numbers, produces 16-bit output

We now turn to the construction of chips for addition. We do so in a modular fashion from half adders that can add two bits,
over full adders that add three bits, to adder chips for numbers of arbitrary fixed length.

4.1 Half Adder

a b carry sum

0 0 0 0 a L sum
0 1 0 1 Half Adder

1 0 0 1 > =
1 1 1 0

Figure 1: Figure under CCO 1.0

The half adder adds two bits and produces two bits, namely the
sum and a potential carry. Note that carry and sum can be
understood as 2-bit number that represents the result. E.g., in
the final row, we add two 1s, which is 2, represented as binary
number 1 0.

e Several implementations possible

e DNF with Not, And, Or
e Alternative based on two gates
e sum = Xor(a, b)
e carry = And(a, b)
You can implement the half adder in several ways. You might
start from the DNF or you use the alternative based on two gates

shown here. Please convince yourself that these two gates reflect
the truth table.

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/half-adder.tex
https://creativecommons.org/publicdomain/zero/1.0/

4.2 Full Adder Specification

—— sum

b—— Full Adder
— carry

Figure 2: Figure under CCO 1.0

e Several implementations possible

-0 OO O
R, OORKRR~ROOIT
= O = OO

—_ O O = O === O

e DNF with Not, And, Or

The full adder adds three bits and produces two bits, again the e Based on two Half Adders. see next slide
. .)
sum and a potential carry. Note again that carry and sum can be
understood as 2-bit number that represents the result. E.g., in yypije your implementation could start from the DNF, a usual

the final row, we add three 1s, which is 3, represented as binary gy yqder implementation is based on two half adders as shown
number with two 1s.

next.
4.3 Full Adder Implementation
S2 sum
c
Half Adder 2
a S1 Cc2
b Half Adder 1 c1 — 1+ carry

Figure 3: Full Adder based on Half Adders (Figure under CCO 1.0)

e Internal names

e C1 = And(a, b)

e S1 = Xor(a, b)

e C2 = And(S1, ¢) = And(Xor(a, b), ¢)
e S2 = Xor(S1, ¢) = Xor(Xor(a, b), c)

e Outputs: carry = Or(C1, C2); sum = S2

Note how a full adder can be built from half adders.

If you recall the truth table, then the sum is one if an odd number of 1s are added. This is achieved by an exclusive or of the
three inputs.

The carry is supposed to be 1 if at least two inputs are 1. Here, this is the case if inputs a and b are 1 or if ¢ is 1 in addition
to either of them.

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/full-adder.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/full-adder-impl.tex
https://creativecommons.org/publicdomain/zero/1.0/

4.4 Ripple-Carry 4-bit Adder

x3 y3 x2 y2 x1yl x0 y0

L [L

Full Adder Full Adder Full Adder Half Adder

S e e

S4 S3 S2 S1 SO

Figure 4: Figure under CCO 1.0

e Add 4-bit numbers x = x3zoz120 and y = y3y2y1Yo

¢ Produce 5-bit number S = x + y = 5453525159

e (Or ignore/omit S4 to produce 4-bit number)

By chaining 1-bit adders one after the other, we can build adders for any number of bits. Here you see an example for a 4-bit
adder. As observed earlier, the rightmost adder can be a half adder as only two digits need to be added without carry.

The construction here is called ripple-carry adder as the carry bit may propagate, or ripple, from the right all the way to the
left. This causes some propagation delay before the computation is completed, and several adder optimizations exist to speed
up the process.

However, such optimizations are beyond our topics.

Regarding the number and naming of outputs, there is some freedom. The adder shown here produces 5 output bits, of which
the final one can also be understood as carry bit. Alternatively, the fifth bit may be omitted entirely, to produce again a 4-bit
number. As observed previously, with less than 5 output bits, overflows may occur, which lead to incorrect results.

Note that the adder works independently of any assumption regarding the interpretation of resulting bits. The adder can be
understood to add positive numbers (without overflows), or we may interpret inputs and output as numbers under 2’s complement
(which requires to ignore the fifth bit).

In class, we may build a ripple-carry adder for 16-bit addition. That adder has two 16-bit inputs and produces one 16-bit
output, all of which are interpreted as numbers under 2’s complement (potentially leading to overflows).

5 Self-Study Tasks

Maybe take a break.

5.1 Negative Numbers
e What is -42 as 7-bit number in 2’s complement?

To support your learning, pause here to work on the given task.

5.2 Recall Adders
e What parts make up a half adder? A full adder? A ripple-carry adder?

Draw the various adders.

Bibliography

Nisan, Noam, and Shimon Schocken. 2005. The Elements of Computing Systems: Building a Modern Computer

from First Principles. The MIT Press. https://www.nand2tetris.org/.
The bibliography contains references used in this presentation.

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/four-bit-adder.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://www.nand2tetris.org/

License Information

Source files are available on GitLab (check out embedded submodules) under free licenses. Icons of custom
controls are by @fontawesome, released under CC BY 4.0.

Except where otherwise noted, the work “Combinational Circuits I”, (C) 2024-2026 Jens Lechtenborger, is
published under the Creative Commons license CC BY-SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting license terms.

Source files are available on GitLab, where the author would be happy about contributions, e.g., in terms of issues and merge
requests.

https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Today’s Core Question
	Learning Objectives
	Retrieval Practice

	Addition
	Pen-and-paper method
	Adding with fixed bits

	2’s Complement
	Definitions
	Example and Conversion
	Addition with 2’s Complement

	Building an Adder Chip
	Half Adder
	Full Adder Specification
	Full Adder Implementation
	Ripple-Carry 4-bit Adder

	Self-Study Tasks
	Negative Numbers
	Recall Adders

