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After having built simple gates and chips, we now look at combinational circuits to
perform arithmetic and logical operations on integer numbers. In such circuits, the output is
purely dependent on the input combinations.

Next to such circuits, sequential circuits exists as well, where the output depends not
only on the current inputs but also on some previous state or memory.

The topic of combinational circuits is covered in two presentations, of which this is the
first one.

1 Introduction

Let us begin with a brief look at the core of our topic and its learning objectives, followed by
a recap.

1.1 Today’s Core Question

e How can we perform arithmetic and logic operations on integer numbers,
starting from Boolean logic?

— Based on Chapter 2 of (Nisan and Schocken 2005)

Our goal is to perform arithmetic and logic operations on integer numbers, starting from
Boolean logic.

1.2 Learning Objectives

e Compute 2’s complement of a binary number and use it for addition and
subtraction

e Build, test, and analyze combinational circuits leading to the Hack ALU
(Project 2)

— Half and full adder, Ripple-Carry Adder (Add16)
— Incrementer (Inc16)

— ALU

e Determine ALU operation based on control bits
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You will learn how to add and subtract binary numbers. In particular, you learn to
compute the 2’s complement of a positive number to represent the negative of that number.
Afterwards, you can compute addition and subtraction using traditional addition, where we
add digit by digit.

You implement combinational circuits for such operations, in particular the ALU of our
Hack computer. For the ALU you will then be able to determine its computation based on
given control bits.

1.3 Retrieval Practice
e Prior knowledge
— How do you add two numbers with pen and paper, say 4242 + 67897
Please take a brief break and add two decimal numbers here. Quite likely, in elementary

school you learned how to do so with pen and paper, writing the numbers underneath
each other and adding them digit by digit.

— What is 101010 in decimal?
Convert the shown binary number to decimal.
e What is a multi-bit chip?

Recall what a multi-bit chip is.

Agenda
e Part 1
— Introduction
— Addition

— 2’s Complement
— Building an Adder Chip

e Break for self-study

e Part 2
— Hack ALU
— Project 2

— Conclusions

The material for combinational circuits is as follows.

After this introduction, we discuss the addition of binary numbers. In particular, we
present 2’s complement to represent signed binary numbers of a fixed length. Based on this
background, we delve into the implementation of adder chips.

Then, you might want to take a break and apply covered techniques.

Afterwards, in part 2, we look at the Hack ALU, which is the major part of Project 2 of
Nand to Tetris.

2 Addition

Let us analyze addition.



2.1 Pen-and-paper method

e In decimal

4242
+ 6789
Carry: 11110

We add digits from right to left, possibly with “carry”
e In binary

10110111
+ 11000101
Carry: 100000110

- - - . 101111100
This slide shows how to add numbers digit by digit from right to left. Please verify the cal-

culations and convince yourself that the method works for numbers of any base. Subsequently,
we are interested in base 2 for binary numbers.

e Note

— Rightmost (lowest) position
with carry 0

* Only need to add 2 bits

— Other positions need to add
3 bits

For the rightmost position, we just need
to add two digits, while other positions
may have a nonzero carry. Such a carry
needs to be added as third digit.

— Both sample results are 1
digit larger than the inputs

* Overflow in case of
fixed digits/bits; incor-
rect result if discarded

The result of an addition might
need more digits than its inputs.
If we use a fixed number of digits,
the result might be too large to
be represented. Then, an over-
flow occurs, and the result is
incorrect. We expand on that
thought next.

2.2 Adding with fixed bits

e Binary addition of previous slide

— 10110111 + 11000101 = 101111100 (= 380)
— Suppose restriction to 8 bits

* Largest number is 28 — 1 = 255



% 8-bit-result (drop leading 1 and 0): 1111100 (= 124)
- Incorrect, overflow, bug
- Examples at Wikipedia
Here you see how the result of our calculation would be incorrect if numbers were restricted
to 8 bits. In general, it is the programmer’s responsibility to be aware of potential size
limitations and to check for overflows; otherwise, the program would be buggy.

See Wikipedia for examples if you are interested. Note that the icon of the hyperlink here
indicates that this link goes beyond class topics.

e Insight (recall Fail task)

— Restricting to n bits corresponds to Modulo operation
* mod 2"

— n=8: 10110111 + 11000101 = 1111100 mod 256

Please convince yourself that restricting a number to n bits is the same as computing the
modulo operation with 2™.

Note that in this case, the icon of the hyperlink indicates essential information. Thus,
please follow such links if you cannot explain their topics.

3 2’s Complement

2’s complement is one popular way to define negative numbers.

3.1 Definitions
e Consider n-bit number k

— k. =2"—k is 2’s complement of k£ (and vice versa)
Given an n-bit number k, we say that 2™ - k is the 2’s complement of k.

x Note: k+ k. = 2" = 0 mod 2", i.e., complementary numbers
add up to zero

x BE.g.,n=4,2*=16: 1 and 15 are complements of each other; 8
is complement of itself
In other words, 2’s complement defines n-bit numbers to be complements of each
other if their sum is 2.
Again in other words, their sum is 0 modulo 2.
E.g., with 4 bits, 1 and 15 are complements of each other as they add up to 16.

— If most significant bit of k is 0, interpret as (usual) positive number

— If most significant bit is 1, interpret bit pattern as negative number:
k= —k.

* BE.g., 15 = (1111)2 and 8 = (1000)2 are interpreted as negative
numbers under 2’s complement: (1111); = —1 and (1000); = —8

Recall that the leading bit of a number is the most significant one. If the most
significant bit of a number is 0, we interpret the bit pattern as ordinary, positive
binary number.
If the most significant bit of a number is 1, we interpret the bit pattern as
negative number under 2’s complement. Namely, we interpret such a bit pattern
as negative of its complement. This interpretation makes sense as both numbers
(in the usual interpretation) add up to 0 as remarked above.
You see examples here.
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3.2 Example and Conversion

e 2" signed numbers between —2"~! and 27! — 1

Under this interpretation, with n bits we represent 2" signed numbers in the range
shown here.

- Eg,n=4
0 0000
1 0001 1111 -1
2 0010 1110 -2
3 0011 1101 -3
4 0100 1100 -4
5 0101 1011 -5
6 0110 1010 -6
7 0111 1001 -7
1000 -8
E.g., with 4 bits under 2’s complement, these numbers arise.
— Note

* Positive numbers start with
0

- Usual binary number

* Negative numbers start with
1

x To convert a number

- Leave all trailing 0’s
and first 1 intact, flip all
remaining bits or

- Flip all bits and add 1
Thus, positive numbers start with 0 and are our usual binary numbers. In contrast,
negative numbers start with 1. To convert a number, two methods are shown here.

Maybe the second method is easier to remember: Flip all bits and add 1. Please try this
out on your own.

3.3 Addition with 2’s Complement
e We just add bit patterns, mod 2"

— No need to treat negative numbers specially

— Subtraction as addition with 2’s complement

*x Example
2-5 =2+ (-5): 0010
+ 1011
1101 = -3

— In Hack, overflows will be ignored

* Programming bug



Thanks to the design of 2’s complement, when adding numbers, we do not need to watch
out for the sign. We can just add numbers bit by bit, and subtraction arises automatically
when adding a negative number.

An example is shown here.

Importantly, overflows can occur. If that happens, our Hack hardware will silently ignore
this. As mentioned earlier, it is the programmer’s task to avoid such bugs. In fact, other
hardware may have methods to signal overflows, and as an exercise we could also add an
overflow output to the Hack ALU.

4 Building an Adder Chip

e Sequence of chips

— Increasing complexity

1. HalfAdder: Adds two bits, produces two output bits
2. FullAdder: Adds three bits, produces two output bits
3. Add16: Adds two 16-bit numbers, produces 16-bit output

We now turn to the construction of chips for addition. We do so in a modular fashion
from half adders that can add two bits, over full adders that add three bits, to a chip that
adds 16-bit numbers.

4.1 Half Adder

a b carry sum

0 O 0 0
0 1 0 1
1 0 0 1
1 1 1 0

The half adder adds two bits and produces two bits, namely the sum and a potential
carry. Note that carry and sum can be understood as 2-bit number that represents the result.
E.g., in the final row, we add two 1s, which is 2, represented as binary number 1 0.

a— — sum
Half Adder
b |— carry

Figure 1: Figure under CCO 1.0

e Several implementations possible

— DNF with Not, And, Or

— Alternative based on two
gates

* sum = Xor(a, b)

* carry = And(a, b)
You can implement the half adder in several ways. You might start from the DNF or you
use the alternative based on two gates shown here. Please convince yourself that these two
gates reflect the truth table.
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4.2 Full Adder Specification

a b ¢ carry sum
0 0 O 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The full adder adds three bits and produces two bits, again the sum and a potential carry.
Note again that carry and sum can be understood as 2-bit number that represents the result.
E.g., in the final row, we add three 1s, which is 3, represented as binary number with two 1s.

a—oI

|— sum
b—— Full Adder
carry

Figure 2: Figure under CCO 1.0

e Several implementations possible

— DNF with Not, And, Or

— Based on two Half Adders,

) see next slide . .
While your implementation could start from the DNF, a usual full adder implementation

is based on two half adders as shown next.

4.3 Full Adder Implementation

Half Adder 2
s1 | 2
Half Adder 1 ¢y carry

Figure 3: Full Adder based on Half Adders (Figure under CCO 1.0)

e Internal names

C1 = And(a, b)

S1 = Xor(a, b)

— 02 = And(S1, ¢) = And(Xor(a, b), ¢)
— 52 = Xor(S1, ¢) = Xor(Xor(a, b), c)

e Outputs: carry = Or(C1, C2); sum = S2

Note how a full adder can be built from half adders.

If you recall the truth table, then the sum is one if an odd number of 1s are added. This
is achieved by an exclusive or of the three inputs.

The carry is supposed to be 1 if at least two inputs are 1. Here, this is the case if inputs
a and b are 1 or if ¢ is 1 in addition to either of them.
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4.4 Ripple-Carry 4-bit Adder

x3y3 x2y2 xiyl x0y0
| |
[ Iy 1l

Full Adder Full Adder Full Adder Half Adder

[l e gl B

Figure 4: Figure under CCO 1.0

e Add 4-bit numbers z = z3zox129 and y = y3y2y1Yo
— Produce 5-bit number S = x + y = 5453525159

By chaining 1-bit adders one after the other, we can build adders for any number of bits.
Here you see an example for a 4-bit adder. As observed earlier, the rightmost adder can be a
half adder as only two digits need to be added without carry.

The construction here is called ripple-carry adder as the carry bit may propagate, or
ripple, from the right all the way to the left. This causes some propagation delay before
the computation is completed, and several adder optimizations exist to speed up the process.

However, such optimizations are beyond our topics.
In class, we build a ripple-carry adder for 16-bit addition.

5 Self-Study Tasks

Maybe take a break.

5.1 Negative Numbers
e What is -42 as 7-bit number in 2’s complement?

To support your learning, pause here to work on the given task.

5.2 Recall Adders
e What parts make up a half adder? A full adder? A ripple-carry adder?

Draw the various adders.
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