
Boolean Logic II *

Jens Lechtenbörger

IT Systems, Summer Term 2024

We start our journey towards a computer with Boolean logic. This topic is covered in two
presentations, of which this is the second one.

1 Introduction

� Part 1

� Introduction

� Boolean Logic

� Break for self-study

� Part 2

� Boolean Circuits

� Sample Transformations

� Multiplexors and De-Multiplexors, Project 1

� Conclusions

In part 1, basics of Boolean logic were introduced.
In part 2, we examine the construction of Boolean Circuits. Towards this goal, we explore

Sample Transformations to simplify Boolean expressions, before their implementation.
Then we look at the functionality of Multiplexors and De-Multiplexors, with a speci�c

focus on the implementation of these and other chips in Project 1. Finally, we draw Conclu-
sions.

2 Boolean Circuits

We now turn to the implementation of Boolean functions in terms of circuits.
A circuit is a device that consists of multiple gates or chips, which are wired together to

form more complex functionality.

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://oer.gitlab.io/oer-courses/it-systems/03-Boolean-Logic-II.html
https://gitlab.com/oer/oer-courses/it-systems
https://gitlab.com/oer/oer-courses/it-systems


2.1 Symbols for Logical Gates

Figure 1: �Symbols for logical gates� under CC0 1.0; from GitLab

As building blocks for circuits we use logical gates, for which you see symbolic representations
here.

On the left, we see symbols for the operations Not, And, Or. On the right, small circles
denote negation, which may appear for inputs or the output. Nand is the name for a negated
And. Nor is the name for a negated Or.

Also, gates may have di�erent numbers of inputs, which is introduced as fan-in on the
next slide.

2

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/symbols.tex


2.2 Fan-In and Circuits

� Gate's interface de�nes number
of inputs

� Gates and chips have pins

for inputs and outputs

� Number of inputs called
fan-in

The interface of a logical gate de-
�nes how many inputs it accepts
and how many outputs it pro-
duces. In fact, in hardware, the
inputs and outputs may be visi-
ble as pins, which can be wired
to other gates or chips to form
larger circuits.

The number of inputs for a gate
is called its fan-in

� Fan-in is 2 for Nand, And, Or
in case of Nand to Tetris

* With associative and
commutative opera-
tions, gates of any
fan-in work in any
order of computation
For typical operations such
as Nand and Or, the fan-in
is 2 in Nand to Tetris.
If you think about it, we
might also build gates with
a larger fan-in.

* Consider

f2(x1, x2, x3) = (1)

x̄1x̄2x3 + x1x̄2x̄3 + x1x̄2x3 + x1x2x̄3(2)

x1 x2 x3 f2(x1, x2, x3)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Consider the function f2
shown here. If we want
to implement f2 as cir-
cuit starting from the DNF,
the fan-in de�nes how many
gates we need.

� Alternatives

� Fan-in of 2

Figure 2: Figure under CC0 1.0

� Fan-in of 4

Figure 3: Figure under CC0 1.0

3

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/sop-fan-in-2.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/sop.tex
https://creativecommons.org/publicdomain/zero/1.0/


Clearly, with a fan-in of 2 we need more gates than with a fan-in of 4. Please draw such
circuits on your own.

2.3 Multi-Bit and Multi-Way Gates

� Multi-bit gates/chips: Inputs are n-bit operands each

� E.g., And16: And for 16-bit numbers is applied bit-by-bit

* And16(1100110011001100, 00001111000011110000) = 0000110000001100

* Use 16 And gates in implementation

So far, we manipulated individual bits. Of course, when building a computer, we also
want to be able to operate on larger quantities, e.g., on 16-bit numbers. For this purpose, we
use multi-bit versions of gates and chips. E.g., if we want to apply some logical operation
to 16-bit numbers in a bit by bit fashion, we can build a chip which embeds 16 gates that
operate on individual bits each.

� Multi-way gates/chips: More than 2 inputs, i.e., fan-in larger than 2

� E.g., Or8Way: 8 inputs; out = 1 if at least one of them is 1

* Use suitable number of Or gates in implementation

In addition, we can build so-called multi-way chips, which have a fan-in larger than 2.
E.g., in Nand to Tetris, you are supposed to build an Or chip with 8 inputs. It is easy to see
that you can do so by using a suitable number of Or gates that operate on 2 inputs each.

3 Sample Transformations

We now apply some laws to simplify Boolean expressions.

3.1 Sample Algebraic Simpli�cations

� Simplify f2(x1, x2, x3)

= x̄1x̄2x3 + x1x̄2x̄3 + x1x̄2x3 + x1x2x̄3 (3)

= (x̄1 + x1)x̄2x3 + (x̄2 + x2)x1x̄3 (4)

= x̄2x3 + x1x̄3 (5)

Let us simplify f2, which is in disjunctive normal form.
In the �rst step, we look for pairs of minterms that di�er only in the negation of one

variable. On such pairs, which are shown in the same color, we use distributivity to factor
out common terms. (Actually, associativity and commutativity are also used to bring the
minterms and their variables into forms and positions where distributivity is applicable.)

In the second step, we eliminate the complementing variables.
If this step is not obvious to you, please revisit the laws shown earlier: A sum of a variable

with its negation results in 1, and a multiplication with 1 does not change the result, which
is why it can be omitted.

� Simplify x̄1x̄2x3 + x1x̄2x3 + x1x2x3

Please try to proceed similarly here.

� x̄1x̄2x3 + x1x̄2x3 + x1x̄2x3 + x1x2x3

� (x̄1 + x1)x̄2x3 + (x̄2 + x2)x1x3

Here, we �rst duplicate the second minterm, which is allowed as x equals x +
x. Afterwards, we can use each of the duplicates for a separate application of
distributivity.

4



3.2 DNF to All-Nand, Graphically

Presentation contains image grid. LATEX export not supported.
As an exercise in Boolean logic, let us see an easy way to transform any sum of products

into a circuit containing only Nand gates.
We start from a circuit for the simpli�ed expression on the previous slide.
In the �rst step we introduce double negations on the paths from And gates to Or gates.

As an easily veri�ed law of Boolean logic, two negations cancel each other out. Thus, this
step does not change the implemented function.

Next, we use a De Morgan rule to replace the Or gate and its negated inputs with a Nand
gate. Besides, we replace the remaining Not gates with Nand gates. Again, this step does not
change the implemented function.

We are now left with a circuit that contains only Nand gates.
Note that the transformations shown here are meant as an exercise in Boolean logic. In

general, we do not aim for implementations of circuits that are restricted to Nand gates.
Instead, we will build and use more and more complex chips subsequently.

4 Multiplexors and De-Multiplexors, Project 1

We now introduce multiplexors and de-multiplexors, which you build as part of Project 1.
Later on, those chips turn out to be important to select among multiple choices and to
perform routing in more complex circuits.

4.1 Mux

� Truth table

a b sel out
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

� Speci�cation (from Mux.hdl)

� If sel==1 then out=b

else out=a.

Figure 4: Figure under CC0 1.0

A multiplexor, or mux for short,
implements the if statement
shown here. Based on a selector
bit, it forwards one of two inputs
to its single output.

� Alternative view on truth
table

sel out
0 a
1 b

The truth tables correspond exactly to this speci�cation.

� Self-study

� Implement Mux

* Start from truth table, simplify (task in Learnweb)

5

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/mux.tex
https://creativecommons.org/publicdomain/zero/1.0/


* Use Not, And, Or gates

� In class

� Implement Mux8Way16

Implement the Mux yourself.
In class, we take a look at a more complex multi-way, multi-bit variant.

4.2 DMux

� Truth table

in sel a b
0 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

� Speci�cation (from DMux.hdl)

{a,b} = {in,0} if sel==0

{0,in} if sel==1

Figure 5: Figure under CC0 1.0
A DMux is a routing device, which forwards a single input based on a selector bit to one

of two outputs.
The speci�cation says that in case of the selector bit being 0, the input is forwarded as

output a, while output b is 0.
If the selector bit is 1, the input is forwarded as output b, while output a is 0.

� Self-study

� Implement DMux

* Read from truth table

* Use one Not, two And gates

� In class

� Implement DMux8Way

Implement the DMux yourself.
In class, we take a look at a more complex multi-way, multi-bit variant.

4.3 Project 1

� Given: Nand(a,b), false

a b Nand(a, b)
0 0 1
0 1 1
1 0 1
1 1 0

� Build:

6

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/dmux.tex
https://creativecommons.org/publicdomain/zero/1.0/


� Not(a) = . . .

� true = . . .

� And(a,b) = . . .

� Or(a,b) = . . .

� Mux(a,b,sel) = . . .

� Etc. - 12 gates altogether

� See Chapter 1 of (Nisan and Schocken 2005)

As part of project 1 of Nand to Tetris, your task is to implement several chips. For some
chips, slides contain hints. For others, please try yourself, also in class. Please do not hesitate
to ask.

Importantly, recall that Chapter 1 of our book ends with tips.

5 Conclusions

Let us conclude.

5.1 Summary

� Boolean logic is formal foundation for functionalities of gates and chips

� DNF provides canonical representation for Boolean functions

� Can be read o� truth table

� Simpli�cation with laws

� Project 1 builds on Boolean logic to construct gates and circuits

� Starting from {Nand}, which is functionally complete

Boolean logic serves as the formal foundation for the operations of gates and chips, pro-
viding a rigorous framework for digital functionality. Within this logic, Disjunctive Normal
Form provides a canonical representation for Boolean functions.

DNF can be directly derived from the truth table and further simpli�ed using established
laws. Project 1 leverages Boolean logic as its foundation to construct gates and circuits. It
starts from the functionally complete Nand gate, laying the groundwork for subsequent circuit
design and implementation.

5.2 Q&A

� Please ask questions and provide feedback on a regular basis

� Something confusing?

* What did you understand? Where did you get lost?

� Maybe suggest improvements on GitLab

* Did you create exercises, experiments, explanations?

� Use Learnweb: Shared, anonymous pad and MoodleOver�ow

7

https://gitlab.com/oer/oer-courses/it-systems
https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=75909


This slide serves as reminder that I am happy to obtain and provide feedback for course
topics and organization. If course material is confusing, please let us know. This will be most
e�ective if you describe your current understanding, which might allow us to identify root
causes of misunderstandings. Please ask questions that allow others to help you, either in a
shared pad or in our forum. Most questions turn out to be of general interest; please do not
hesitate to ask and answer where others can bene�t.

In addition, if you created additional original content that might help others (e.g., a new
exercise, an experiment, explanations concerning relationships with di�erent courses, . . . ),
please share. Maybe suggest improvements to course material on GitLab.

Bibliography

Nisan, Noam, and Shimon Schocken. 2005. The Elements of Computing Sys-

tems: Building a Modern Computer from First Principles. The MIT Press.
https://www.nand2tetris.org/.

The bibliography contains references used in this presentation.

License Information

Source �les are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

Except where otherwise noted, the work �Boolean Logic II�, © 2024 Jens
Lechtenbörger, is published under the Creative Commons license CC BY-SA
4.0.

This presentation is distributed as Open Educational Resource under freedom granting
license terms.

8

https://www.nand2tetris.org/
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Boolean Circuits
	Symbols for Logical Gates
	Fan-In and Circuits
	Multi-Bit and Multi-Way Gates

	Sample Transformations
	Sample Algebraic Simplifications
	DNF to All-Nand, Graphically

	Multiplexors and De-Multiplexors, Project 1
	Mux
	DMux
	Project 1

	Conclusions
	Summary
	Q&A


