Boolean Logic II 2

IT Systems, Summer Term 2026
Dr. Matthes Elstermann

We start our journey towards a computer with Boolean logic. This topic is covered in two presentations, of which this is the
second one.

1 Introduction

e Part 1

e Introduction

e Boolean Logic
e Break for self-study
e Part 2

e Boolean Circuits
e Sample Transformations
e Multiplexors and De-Multiplexors, Project 1

e Conclusions
In part 1, basics of Boolean logic were introduced.
In part 2, we examine the construction of Boolean Circuits. Towards this goal, we explore Sample Transformations to simplify
Boolean expressions, before their implementation.

Then we look at the functionality of Multiplexors and De-Multiplexors, with a specific focus on the implementation of these
and other chips in Project 1. Finally, we draw Conclusions.

2 Boolean Circuits

We now turn to the implementation of Boolean functions in terms of circuits.
A circuit is a device that consists of multiple gates or chips, which are wired together to form more complex functionality.

2.1 Symbols for Logical Gates

!

And Ty Y d4 And Tyz

Figure 1: “Symbols for logical gates” under CCO 1.0; from GitLab

As building blocks for circuits we use logical gates, for which you see symbolic representations here.

On the left, we see symbols for the operations Not, And, Or. On the right, small circles denote negation, which may appear
for inputs or the output. Nand is the name for a negated And. Nor is the name for a negated Or.

Also, gates may have different numbers of inputs, which is introduced as fan-in on the next slide.

I This PDF document is an inferior version of an OER in HTML format; free/libre Org mode source repository.
2Material created by Jens Lechtenbdrger; see end of document for license information.

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/symbols.tex
https://oer.gitlab.io/oer-courses/it-systems/03-Boolean-Logic-II.html
https://gitlab.com/oer/oer-courses/it-systems

2.2 Fan-In and Circuits

e Gate’s interface defines number of inputs e Alternatives

e Gates and chips have pins for inputs and outputs e Fan-in of 2

e Number of inputs called fan-in
The interface of a logical gate defines how many inputs it
accepts and how many outputs it produces. In fact, in
hardware, the inputs and outputs may be visible as pins,
which can be wired to other gates or chips to form larger
circuits. falwr, w2, 3)

The number of inputs for a gate is called its fan-in.

e Fan-in is 2 for Nand, And, Or in case of Nand2Tetris

e With associative and commutative operations,

gates of any fan-in work in any order of compu- Figure 2: Figure under CCO 1.0
tation

For typical operations such as Nand and Or, the fan-in

is 2 in Nand2Tetris. e Fan-in of 4

If you think about it, we might also build gates with a
larger fan-in.

* Consider -
1
fa(w1, 20, 03) =
T1X2X3 + T1ToLs + X1 T2z + T1X2X3 T2 oy, @2, x3)
Ty xy w3 for(w1, 9, 73) 23
0 0 0 0
0 0 1 1
0 1 0 0 . .
0 1 1 0 Figure 3: Figure under CCO 1.0
1 0 0 1
1 0 1 1 Clearly, with a fan-in of 2 we need more gates than with a fan-in
1 1 0 1 of 4. Please draw such circuits on your own.
1 1 1 0

Consider the function fo shown here. If we want to im-
plement fa as circuit starting from the DNF, the fan-in
defines how many gates we need.

2.3 Multi-Bit and Multi-Way Gates
e Multi-bit gates/chips: Inputs are n-bit operands each

e E.g., And16: And for 16-bit numbers is applied bit-by-bit

e And16(1100110011001100, 00001111000011110000) = 0000110000001100
¢ Use 16 And gates in implementation
So far, we manipulated individual bits. Of course, when building a computer, we also want to be able to operate on larger
quantities, e.g., on 16-bit numbers. For this purpose, we use multi-bit versions of gates and chips. E.g., if we want to apply some

logical operation to 16-bit numbers in a bit by bit fashion, we can build a chip which embeds 16 gates that operate on individual
bits each.

e Multi-way gates/chips: More than 2 inputs, i.e., fan-in larger than 2

e E.g., Or8Way: 8 inputs; out = 1 if at least one of them is 1

e Use suitable number of Or gates in implementation
In addition, we can build so-called multi-way chips, which have a fan-in larger than 2. E.g., in Nand2Tetris, you are supposed

to build an Or chip with 8 inputs. It is easy to see that you can do so by using a suitable number of Or gates that operate on 2
inputs each.

3 Sample Transformations

We now apply some laws to simplify Boolean expressions.

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/sop-fan-in-2.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/sop.tex
https://creativecommons.org/publicdomain/zero/1.0/

3.1 Sample Algebraic Simplifications
o Simplify fa(21, 22, 73)

= T122%3 + X1T2T3 + T1X2X3 + L1273
= (I_l + Il)l’_gxg + (:Z?_Q + Ig)l‘lfg

= X2T3 + X173

Let us simplify f2, which is in disjunctive normal form.

In the first step, we look for pairs of minterms that differ only in the negation of one variable. On such pairs, which are shown
in the same color, we use distributivity to factor out common terms. (Actually, associativity and commutativity are also used to
bring the minterms and their variables into forms and positions where distributivity is applicable.)

In the second step, we eliminate the complementing variables.

If this step is not obvious to you, please revisit the laws shown earlier: A sum of a variable with its negation results in 1, and
a multiplication with 1 does not change the result, which is why it can be omitted.

L4 Slmphfy flfg.fg + .’blfgl'g + 12223

Please try to proceed similarly here.

® U1X2X3 + T1Tox3 + T1T2X3 + T1XT2X3

° (.f1 + 1’1)5523;‘3 + (fg + .Tz)mlxg
Here, we first duplicate the second minterm, which is allowed as x equals x + x. Afterwards, we can use each of the duplicates
for a separate application of distributivity.

3.2 DNF to All-Nand, Graphically

L1 L3 L2
i) I3 i) I I3 o
f2($13$2}$3) f2($17$2:$3)
(a) Figure under CCO0 1.0 (b) Figure under CC0 1.0

fa(w1, 22, 23)
(¢) Figure under CCO 1.0

As an exercise in Boolean logic, let us see an easy way to transform any sum of products into a circuit containing only Nand gates.

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/sop.tex-all-nand-1
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/sop-all-nand-2.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/sop-all-nand-3.tex
https://creativecommons.org/publicdomain/zero/1.0/

We start from a circuit for the simplified expression on the previous slide.

In the first step we introduce double negations on the paths from And gates to Or gates. As an easily verified law of Boolean
logic, two negations cancel each other out. Thus, this step does not change the implemented function.

Next, we use a De Morgan rule to replace the Or gate and its negated inputs with a Nand gate. Besides, we replace the
remaining Not gates with Nand gates. Again, this step does not change the implemented function.

We are now left with a circuit that contains only Nand gates.

Note that the transformations shown here are meant as an exercise in Boolean logic. In general, we do not aim for implemen-
tations of circuits that are restricted to Nand gates. Instead, we will build and use more and more complex chips subsequently.

4 Multiplexors and De-Multiplexors, Project 1

We now introduce multiplexors and de-multiplexors, which you build as part of Project 1. Later on, those chips turn out to be
important to select among multiple choices and to perform routing in more complex circuits.

4.1 Mux

e Truth table e Specification (from Mux.hdl)

out e Jf sel==1 then out=b else out=a.

2]
@
—_—

out

sel

-0 O O O
= OOoOKRFROOlT
O = O = O = O
_H O, FHOOO

Figure 5: Figure under CCO 1.0

A multiplexor, or mux for short, implements the if state-
ment shown here. Based on a selector bit, it forwards one
of two inputs to its single output.

e Alternative view on truth table

sel out
0 a
1 b

The truth table corresponds exactly to this specification.
e Self-study

e Implement Mux

e Start from truth table, simplify (task in Learnweb)
e Use Not, And, Or gates

e Maybe in class
e Implement Mux8Way16

Implement the Mux yourself.
In class, we may take a look at a more complex multi-way, multi-bit variant, if you want to.

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/mux.tex
https://creativecommons.org/publicdomain/zero/1.0/

4.2 DMux

e Truth table e Specification (from DMux.hdl)

in el {a,b} = {in,0} if sel==0

{0,in} if sel==

-0 O
—_ O = O
o~ OOl
_ o o olT

sel

Figure 6: Figure under CCO 1.0
A DMux is a routing device, which forwards a single input based on a selector bit to one of two outputs.
The specification says that in case of the selector bit being 0, the input is forwarded as output a, while output b is 0.
If the selector bit is 1, the input is forwarded as output b, while output a is 0.
Again, the truth table on the left specifies exactly the same behavior as the if statement on the right.

e Self-study

¢ Implement DMux

¢ Read from truth table
e Use one Not, two And gates

e Maybe in class
e Implement DMux8Way

Implement the DMux yourself.
In class, we may take a look at a more complex multi-way, multi-bit variant.

4.3 Project 1
e Given: Nand(a,b), false

a b Nand(a, b)
0 O 1
0 1 1
1 0 1
1 1 0
e Build:

e Not(a) = ...

® true — ...

e And(a,b) = ...

e Or(ab) = ...

[]

Mux(a,b,sel) = ...
Etc. - 12 gates altogether

e See Chapter 1 of (Nisan and Schocken 2005)

As part of project 1 of Nand2Tetris, your task is to implement several chips. For some chips, slides contain hints. For others,
please try yourself, also in class. Please do not hesitate to ask.
Importantly, recall that Chapter 1 of our book ends with tips.

5 Conclusions

Let us conclude.

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/dmux.tex
https://creativecommons.org/publicdomain/zero/1.0/

5.1 Summary

e Boolean logic is formal foundation for functionalities of gates and chips
e DNF provides canonical representation for Boolean functions

e Can be read off truth table

e Simplification with laws
e Project 1 builds on Boolean logic to construct gates and circuits
e Starting from {Nand}, which is functionally complete

Boolean logic serves as the formal foundation for the operations of gates and chips, providing a rigorous framework for digital
functionality. Within this framework, Disjunctive Normal Form provides a canonical representation for Boolean functions.

DNF can be directly derived from the truth table and further simplified using established laws. Project 1 leverages Boolean
logic as its foundation to construct gates and circuits. It starts from the functionally complete Nand gate, laying the groundwork
for subsequent circuit design and implementation.

5.2 Q&A
e Please ask questions and provide feedback on a regular basis

e Something confusing?

e What did you understand? Where did you get lost?
e Maybe suggest improvements on GitLab

¢ Did you create exercises, experiments, explanations?

e Use Learnweb: Shared, anonymous pad and MoodleOverflow

This slide serves as reminder that T am happy to obtain and provide feedback for course topics and organization. If course
material is confusing, please let us know. This will be most effective if you describe your current understanding, which might allow
us to identify root causes of misunderstandings. Please ask questions that allow others to help you, either in a shared pad or in
our forum. Most questions turn out to be of general interest; please do not hesitate to ask and answer where others can benefit.

In addition, if you created additional original content that might help others (e.g., a new exercise, an experiment, explanations
concerning relationships with different courses, ...), please share. Maybe suggest improvements to course material on GitLab.

Bibliography

Nisan, Noam, and Shimon Schocken. 2005. The Elements of Computing Systems: Building a Modern Computer

from First Principles. The MIT Press. https://www.nand2tetris.org/.
The bibliography contains references used in this presentation.

License Information

Source files are available on GitLab (check out embedded submodules) under free licenses. Icons of custom
controls are by @fontawesome, released under CC BY 4.0.

Except where otherwise noted, the work “Boolean Logic 117, (©) 2024-2025 Jens Lechtenborger, is published
under the Creative Commons license CC BY-SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting license terms.
Source files are available on GitLab, where the author would be happy about contributions, e.g., in terms of issues and merge
requests.

https://gitlab.com/oer/oer-courses/it-systems
https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=91088
https://www.nand2tetris.org/
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Boolean Circuits
	Symbols for Logical Gates
	Fan-In and Circuits
	Multi-Bit and Multi-Way Gates

	Sample Transformations
	Sample Algebraic Simplifications
	DNF to All-Nand, Graphically

	Multiplexors and De-Multiplexors, Project 1
	Mux
	DMux
	Project 1

	Conclusions
	Summary
	Q&A

