
Boolean Logic I *

Jens Lechtenbörger

IT Systems, Summer Term 2024

We start our journey towards a computer with Boolean logic. This topic is covered in two
presentations, of which this is the �rst one.

1 Introduction

Let us begin with a brief look at the core of our topic and its learning objectives, followed by
a recap.

1.1 Today's Core Question

� How to implement Boolean functions systematically?

Our goal is to implement Boolean functions as building blocks for our computer. Thus,
we explore how to implement them systematically.

1.2 Learning Objectives

� Generate DNF from truth table

� Simplify Boolean expressions

� Transform DNF graphically to All-Nand circuit

� Build chips of project 1

You will learn to implement Boolean functions starting from truth tables. In particular,
you will see how to derive the Disjunctive Normal Form of a Boolean function from its truth
table.

Based on laws of Boolean logic, Boolean expressions can be simpli�ed before they are
implemented as circuits, and Boolean expressions can be transformed into ones that contain
only Nand operations.

Finally, you implement the chips of Project 1 as building blocks for the computer of Nand
to Tetris.

1.3 Retrieval Practice

� Recall

� 0 and 1 represent False and True

� Rows of truth tables ordered by binary counting

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://oer.gitlab.io/oer-courses/it-systems/03-Boolean-Logic-I.html
https://gitlab.com/oer/oer-courses/it-systems
https://gitlab.com/oer/oer-courses/it-systems


� Write down the truth table for Nand now

Recall that you saw truth tables as speci�cations for Boolean functions, in particular for
Nand.

Write down its truth table now. In what order do you write down the rows?

Agenda

� Part 1

� Introduction

� Boolean Logic

� Break for self-study

� Part 2

� Boolean Circuits

� Sample Transformations

� Multiplexors and De-Multiplexors, Project 1

� Conclusions

The material for Boolean Logic is as follows.
After this introduction, we delve into Boolean Logic, starting from a de�nition of Boolean

algebra. In particular, you see how to derive a canonical representation from a function's
truth table.

Then, you might want to take a break and apply covered techniques.
Afterwards, in part 2, we look at circuits, sample transformations, and chips of Project 1

of Nand to Tetris.

2 Boolean Logic

Boolean logic is grounded is a speci�c mathematical structure, namely in an algebra whose
de�nition we see next.

2.1 Boolean Algebra

� Mathematical view on logic, going back to (Boole 1847)

Boolean algebra formalizes a branch of logic in mathematical terms. It is named after
George Boole, who wrote two seminal books on this topic in the middle of the nineteenth
century.

� Algebra B = {0, 1} with three operations for x, y ∈ B:
As you see here, Boolean algebra is de�ned with three operations over a set with
two elements, namely 0 and 1, which represent truth values.

* Or: x ∨ y = max(x, y) (= x + y = Or(x, y))
The Or operation can be de�ned as maximum of two values: If at least one
value is 1, the result is 1. You see typical symbols that are used to denote
this operation.
Subsequently, we usually use the plus sign. Consequently, we may refer to
the result of the operation as sum (with the special interpretation that the
�sum� of one and one equals one).

2



* And: x ∧ y = min(x, y) (= x · y = xy = And(x, y))
The And operation can be de�ned as minimum of two values: If at least one
value is 0, the result is 0.
Again, you see typical symbols that are used to denote this operation. Sub-
sequently, we usually use multiplication, which does not require any symbol.
Consequently, we may refer to the result of the operation as product.

* Not: ¬x = 1− x (= x̄ = Not(x))
The Not operation �ips, or inverts, or negates a value.
Subsequently, we usually use an overline to indicate a negation.

� Precedence: Not binds strongest, then And, then Or

* E.g.: ¬x1x2 + ¬x3 = ((¬x1)x2) + (¬x3)

* Use parentheses for more complex cases or if in doubt

As usual, parentheses can be used to structure more complex expressions. With-
out parentheses, the precedence rules shown here apply.

� Lots of laws/equalities can be proven, see later slide
Based on this de�nition, lots of laws or equalities among Boolean expressions can
be proven. This will be revisited on later slides.

2.2 Boolean Functions and Truth Tables

� Boolean functions have arguments and result in B

� k-ary function f : Bk → B for k ≥ 0
Boolean functions can take any number of Boolean arguments and return a
Boolean value. Although the special case of 0 arguments is included here, we
do not consider such degenerate functions subsequently. In case you are curious,
a function without arguments denotes a constant.

* E.g., k = 3: f0(x1, x2, x3) = x1x2 + x̄3
Consider the Boolean function f0, which takes 3 arguments. Clearly, this
function will produce a uniquely de�ned output value for each of the possible
combinations of input values.

* Can use truth table with 2k rows and k+1 columns to represent
f

x1 x2 x3 f0(x1, x2, x3)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

· See table to right for f0
Please convince yourself that the values in the �nal column of the truth
table here are those produced by the expression de�ning f0.

* Interpret argument in row as binary number, called index: (x1x2 . . . kk)2
· For k = 3, count from 0 = (000)2 to 2k − 1 = 7 = (111)2

Note that the truth table lists all possible input combinations for 3 variables.
Moreover, each input combination can be understood as binary number in
the range from 0 to 7. Concerning terminology, this binary number is called
index.

* Index i with f(i) = 1 is called positive index

3



· 0, 2, 4, 6, 7 are positive indices of f0
If the output value produced for an index is 1, the index is a positive one.
(Otherwise, the index is negative.)
Please verify that the indices listed here are the positive ones for f0.

* Minterm: Product/And-operation, in which each variable oc-
curs once, potentially negated

· E.g., x1x2x3, x1x2x̄3

Again concerning terminology, a minterm is a product that combines all
input variables, where each variable may be negated or not. Examples are
shown here.

2.3 Boolean Function as Sum of Products

� Representation Theorem

� Every Boolean function f can be uniquely represented as sum of all
minterms for its positive indices I, i.e.: f =

∑
i∈I mi

An important theorem of Boolean logic states that every Boolean function can be
uniquely represented as sum of products. More precisely, we sum up minterms
for the positive indices.

* Minterm for index i, denoted mi: Variable occurs negated if
its value in row i is 0; otherwise, variable without negation
In that sum, the binary representation of an index number speci�es which
variables to negate in a minterm: If the bit for a variable is 0, it is negated.
If the bit is 1, the variable is not negated.

· E.g., k = 3: m0 = x̄1x̄2x̄3, m6 = x1x2x̄3

x1 x2 x3 f0(x1, x2, x3)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

For example, in minterm 0 the binary representation contains three
zeros. Hence, all three variables are negated.
As another examples, as 6 is 1 1 0 in binary, in minterm 6 the �rst two
variables are not negated, while the third one is negated.

* Theorem applied to f0 with I = {0, 2, 4, 6, 7}
· f0 = m0 + m2 + m4 + m6 + m7

· f0 = x̄1x̄2x̄3 + x̄1x2x̄3 + x1x̄2x̄3 + x1x2x̄3 + x1x2x3
Here you see the result of applying the theorem to f0.

* Such a sum (logical Or) of products (logical And) is also called
Disjunctive Normal Form (DNF)

· Disjunction is another word for logical Or

· (Conjunction is another word for logical And; conjunctive
normal form exists as well. . . )

As we sum up minterms, which are products of variables, the result is called
sum of products. As disjunction is another word for logical Or, the result
is also called disjunctive normal form, DNF for short.
Besides, conjunctive normal forms exists as well, but we do not consider
them.

4



2.3.1 Observations

� Previous theorem implies that every Boolean function can be expressed
using only And, Or, Not

� DNF is a canonical representation

� We say that {And, Or, Not} is functionally complete

� In Nand To Tetris, along the way (by construction) we prove that {Nand}
is functionally complete

� Recall: Not(x) = Nand(x, x), And(x, y) = ...

The theorem on the previous slide implies that every Boolean function can be expressed
using only the set of operations And, Or, Not. As these operations are applied in a special
order, DNF is also called a canonical representation for Boolean functions.

Moreover, we call sets of operations which are su�cient to represent any Boolean function
functionally complete.

One may wonder whether smaller sets are also functionally complete, and it turns out
that the answer is �yes�. For example, in Nand to Tetris, we start from Nand alone to build
chips for other Boolean operations. This process can be understood as constructive proof for
the fact that Nand alone is functionally complete.

2.4 Laws of Boolean Algebra

� Sample laws

� Commutativity: xy = yx, x + y = y + x

� Associativity: (xy)z = x(yz), (x + y) + z = x + (y + z)

� Fusion: (x + y)x = x, (xy) + x = x

� Distributivity: x(y + z) = xy + xz, x + yz = (x + y)(x + z)

� Complements: x + x̄ = 1, xx̄ = 0

� De Morgan: x + y = x̄ȳ, xy = x̄ + ȳ

� x + 0 = x, x + 1 = 1, x · 0 = 0, x · 1 = x

� x = x + x = xx = ¯̄x

� Use above laws for simpli�cations, proofs of equality

A variety of rules or laws allows transforming Boolean expressions in equality preserving
ways. We can use such rules to simplify Boolean expressions before we implement them as
circuits.

Here, you see selected rules, all of which come with strict mathematical proofs. Some
rules, such as Commutativity and Associativity, may appear to be obvious, while others may
require more thought. In any case, one can use truth tables to prove all of these equations.
In fact, subsequently, you will see a sample proof for one of the De Morgan rules.

2.5 Sample Proof with Truth Table

� Proof for one of the De Morgan rules: xy = x̄ + ȳ

In general, We can use truth tables to prove the correctness of laws and rules of Boolean
logic. Let us see an example for one of the De Morgan rules. It says that the Negation
of x And y is the same as Not x Or Not y.

� Sub-expressions in truth table

5



x y xy xy x̄ ȳ x̄ + ȳ
0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

We create one row for each possible input combination, resulting in 4 rows. We
add columns for the left and right hand side of the expression as well as for
intermediate expressions. Then, we �ll out the table and check whether the
values in the columns for the left and right hand side are equal.

* Note that column values corresponding to left- and right-hand
side of rule are identical (highlighted)

* Thus, expressions are equal (as Boolean functions)
In this case, the values in the columns for the left and right hand side are
equal. Thus, the functions represented by both columns are equal.

3 Self-Study Tasks

Maybe take a break.

3.1 DNF

� What do the gates And, Or, Nand do?

� Consider f1(x1, x2, x3) = x̄1(x̄2 + x̄3) + x1x3.

� Write down the truth table for f1. Then determine its positive indices
and its DNF as sum of minterms.

� Simplify the DNF of f1 using laws of Boolean algebra. (The next
presentation contains examples.)

You can verify your answers in Learnweb.
To support your learning, pause here to work on the given task.

3.2 Sample proofs

� Prove laws of Boolean algebra that seem surprising

� E.g., second De Morgan rule

Revisit the laws of Boolean algebra and prove those that seem surprising.
Maybe start with the De Morgan rule whose proof is not covered in this presentation.

Bibliography

Boole, George. 1847. The Mathematical Analysis of Logic, Being an Essay

towards a Calculus of Deductive Reasoning. https://www.gutenberg.org/

files/36884/36884-pdf.pdf.

The bibliography contains references used in this presentation.

6

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=75909
https://www.gutenberg.org/files/36884/36884-pdf.pdf
https://www.gutenberg.org/files/36884/36884-pdf.pdf


License Information

Source �les are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

Except where otherwise noted, the work �Boolean Logic I�, © 2024 Jens
Lechtenbörger, is published under the Creative Commons license CC BY-SA
4.0.

This presentation is distributed as Open Educational Resource under freedom granting
license terms.

7

https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Today’s Core Question
	Learning Objectives
	Retrieval Practice

	Boolean Logic
	Boolean Algebra
	Boolean Functions and Truth Tables
	Boolean Function as Sum of Products
	Observations

	Laws of Boolean Algebra
	Sample Proof with Truth Table

	Self-Study Tasks
	DNF
	Sample proofs


