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We start our journey towards a computer with Boolean logic. This topic is covered in two presentations, of which this is the
�rst one.

1 Introduction

Let us begin with a brief look at the core of our topic and its learning objectives, followed by a recap.

1.1 Today's Core Question

� How to implement Boolean functions systematically?

Our goal is to implement Boolean functions as building blocks for our computer. Thus, we explore how to implement them
systematically.

1.2 Learning Objectives

� Generate DNF from truth table

� Simplify Boolean expressions

� Transform DNF graphically to All-Nand circuit

� Build chips of project 1

You will learn to implement Boolean functions starting from truth tables. In particular, you will see how to derive the
Disjunctive Normal Form of a Boolean function from its truth table.

Based on laws of Boolean logic, Boolean expressions can be simpli�ed before they are implemented as circuits, and Boolean
expressions can be transformed into ones that contain only Nand operations.

Finally, you implement the chips of Project 1 as building blocks for the computer of Nand2Tetris.

1.3 Retrieval Practice

� Recall

• 0 and 1 represent False and True

• Rows of truth tables ordered by binary counting

� Write down the truth table for Nand now

Recall that you saw truth tables as speci�cations for Boolean functions, in particular for Nand.
Write down its truth table now. In what order do you write down the rows?
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The material for Boolean Logic is as follows.
After this introduction, we delve into Boolean Logic, starting from a de�nition of Boolean algebra. In particular, you see how

to derive a canonical representation from a function's truth table.
Then, you might want to take a break and apply covered techniques.
Afterwards, in part 2, we look at circuits, sample transformations, and chips of Project 1 of Nand2Tetris.

2 Boolean Logic

Boolean logic is grounded is a speci�c mathematical structure, namely in an algebra whose de�nition we see next.

2.1 Boolean Algebra

� Mathematical view on logic, going back to (Boole 1847)

Boolean algebra formalizes a branch of logic in mathematical terms. It is named after George Boole, who wrote two seminal
books on this topic in the middle of the nineteenth century.

• Algebra B = {0, 1} with three operations for x, y ∈ B:
As you see here, Boolean algebra is de�ned with three operations over a set with two elements, namely 0 and 1, which represent
truth values.

• Or: x ∨ y = max(x, y) (= x + y = Or(x, y))
The Or operation can be de�ned as maximum of two values: If at least one value is 1, the result is 1. You see typical
symbols that are used to denote this operation.
Subsequently, we usually use the plus sign. Consequently, we may refer to the result of the operation as sum (with the
special interpretation that the �sum� of one and one equals one).

• And: x ∧ y = min(x, y) (= x · y = xy = And(x, y))
The And operation can be de�ned as minimum of two values: If at least one value is 0, the result is 0.
Again, you see typical symbols that are used to denote this operation. Subsequently, we usually use multiplication, which
does not require any symbol. Consequently, we may refer to the result of the operation as product.

• Not: ¬x = 1− x (= x̄ = Not(x))
The Not operation �ips, or inverts, or negates a value.
Subsequently, we usually use an overline to indicate a negation.

• Precedence: Not binds strongest, then And, then Or

• E.g.: ¬x1x2 + ¬x3 = ((¬x1)x2) + (¬x3)

• Use parentheses for more complex cases or if in doubt

As usual, parentheses can be used to structure more complex expressions. Without parentheses, the precedence rules shown
here apply.

• Lots of laws/equalities can be proven, see later slide
Based on this de�nition, lots of laws or equalities among Boolean expressions can be proven. This will be revisited on later
slides.

2.2 Boolean Functions and Truth Tables

� Boolean functions have arguments and result in B

• k-ary function f : Bk → B for k ≥ 0
Boolean functions can take any number of Boolean arguments and return a Boolean value. Although the special case of 0
arguments is included here, we do not consider such degenerate functions subsequently. In case you are curious, a function
without arguments denotes a constant.

• E.g., k = 3: f0(x1, x2, x3) = x1x2 + x̄3
Consider the Boolean function f0, which takes 3 arguments. Clearly, this function will produce a uniquely de�ned output
value for each of the possible combinations of input values.

• Can use truth table with 2k rows and k + 1 columns to represent f

• See table to right for f0
x1 x2 x3 f0(x1, x2, x3)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1
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Please convince yourself that the values in the �nal column of the truth table here are those produced by the expression
de�ning f0.

• Interpret argument in row as binary number, called index: (x1x2 . . . kk)2
• For k = 3, count from 0 = (000)2 to 2k − 1 = 7 = (111)2
Note that the truth table lists all possible input combinations for 3 variables.
Moreover, each input combination can be understood as binary number in the range from 0 to 7. Concerning terminology,
this binary number is called index.

• Index i with f(i) = 1 is called positive index

• 0, 2, 4, 6, 7 are positive indices of f0
If the output value produced for an index is 1, the index is a positive one. (Otherwise, the index is negative.)
Please verify that the indices listed here are the positive ones for f0.

• Minterm: Product/And-operation, in which each variable occurs once, potentially negated

• E.g., x1x2x3, x1x2x̄3

Again concerning terminology, a minterm is a product that combines all input variables, where each variable may be
negated or not. Examples are shown here.

2.3 Boolean Function as Sum of Products

� Representation Theorem

• Every Boolean function f can be uniquely represented as sum of all minterms for its positive indices I, i.e.:
f =

∑
i∈I mi

An important theorem of Boolean logic states that every Boolean function can be uniquely represented as sum of products.
More precisely, we sum up minterms for the positive indices.

• Minterm for index i, denoted mi: Variable occurs negated if its value in row i is 0; otherwise, variable
without negation
In that sum, the binary representation of an index number speci�es which variables to negate in a minterm: If the bit for
a variable is 0, it is negated. If the bit is 1, the variable is not negated.

• E.g., k = 3: m0 = x̄1x̄2x̄3, m6 = x1x2x̄3

x1 x2 x3 f0(x1, x2, x3)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

For example, in minterm 0 the binary representation contains three zeros. Hence, all three variables are negated.
As another examples, as 6 is 1 1 0 in binary, in minterm 6 the �rst two variables are not negated, while the third one is
negated.

• Theorem applied to f0 with I = {0, 2, 4, 6, 7}
• f0 = m0 + m2 + m4 + m6 + m7

• f0 = x̄1x̄2x̄3 + x̄1x2x̄3 + x1x̄2x̄3 + x1x2x̄3 + x1x2x3
Here you see the result of applying the theorem to f0.

• Such a sum (logical Or) of products (logical And) is also called Disjunctive Normal Form (DNF)

• Disjunction is another word for logical Or

• (Conjunction is another word for logical And; conjunctive normal form exists as well. . . )
As we sum up minterms, which are products of variables, the result is called sum of products. As disjunction is another
word for logical Or, the result is also called disjunctive normal form, DNF for short.
Besides, conjunctive normal forms exists as well, but we do not consider them.

2.3.1 Observations

� Previous theorem implies that every Boolean function can be expressed using only And, Or, Not

• DNF is a canonical representation

� We say that {And, Or, Not} is functionally complete

� In Nand2Tetris, along the way (by construction) we prove that {Nand} is functionally complete

• Recall: Not(x) = Nand(x, x), And(x, y) = ...
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The theorem on the previous slide implies that every Boolean function can be expressed using only the set of operations And,
Or, Not. As these operations are applied in a special order, DNF is also called a canonical representation for Boolean functions.

Moreover, we call sets of operations which are su�cient to represent any Boolean function functionally complete.
One may wonder whether smaller sets are also functionally complete, and it turns out that the answer is �yes�. For example, in

Nand2Tetris, we start from Nand alone to build chips for other Boolean operations. This process can be understood as constructive
proof for the fact that Nand alone is functionally complete.

2.4 Laws of Boolean Algebra

� Sample laws

• Commutativity: xy = yx, x + y = y + x

• Associativity: (xy)z = x(yz), (x + y) + z = x + (y + z)

• Fusion: (x + y)x = x, (xy) + x = x

• Distributivity: x(y + z) = xy + xz, x + yz = (x + y)(x + z)

• Complements: x + x̄ = 1, xx̄ = 0

• De Morgan: x + y = x̄ȳ, xy = x̄ + ȳ

• x + 0 = x, x + 1 = 1, x · 0 = 0, x · 1 = x

• x = x + x = xx = ¯̄x

• Use above laws for simpli�cations, proofs of equality

A variety of rules or laws allows transforming Boolean expressions in equality preserving ways. We can use such rules to simplify
Boolean expressions before we implement them as circuits.

Here, you see selected rules, all of which come with strict mathematical proofs. Some rules, such as Commutativity and
Associativity, may appear to be obvious, while others may require more thought. In any case, one can use truth tables to prove all
of these equations. In fact, subsequently, you will see a sample proof for one of the De Morgan rules.

2.5 Sample Proof with Truth Table

� Proof for one of the De Morgan rules: xy = x̄ + ȳ

In general, We can use truth tables to prove the correctness of laws and rules of Boolean logic. Let us see an example for one of
the De Morgan rules. It says that the Negation of x And y is the same as Not x Or Not y.

• Sub-expressions in truth table

x y xy xy x̄ ȳ x̄ + ȳ
0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

We create one row for each possible input combination, resulting in 4 rows. We add columns for the left and right hand side of
the expression as well as for intermediate expressions. Then, we �ll out the table and check whether the values in the columns
for the left and right hand side are equal.

• Note that column values corresponding to left- and right-hand side of rule are identical (highlighted)

• Thus, expressions are equal (as Boolean functions)
In this case, the values in the columns for the left and right hand side are equal. Thus, the functions represented by both
columns are equal.

3 Self-Study Tasks

Maybe take a break.

3.1 DNF

� What do the gates And, Or, Nand do?

� Consider f1(x1, x2, x3) = x̄1(x̄2 + x̄3) + x1x3.

• Write down the truth table for f1. Then determine its positive indices and its DNF as sum of minterms.

• Simplify the DNF of f1 using laws of Boolean algebra. (The next presentation contains examples.)

You can verify your answers in Learnweb.
To support your learning, pause here to work on the given task.
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3.2 Sample proofs

� Prove laws of Boolean algebra that seem surprising

• E.g., second De Morgan rule

Revisit the laws of Boolean algebra and prove those that seem surprising.
Maybe start with the De Morgan rule whose proof is not covered in this presentation.
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