Nand2Tetris *

Jens Lechtenborger

IT Systems, Summer Term 2024

In the first part of our course, you will build a computer in a software simulator, which is
part of the project Nand to Tetris. As the name suggests, you start from a simple logic gate
that implements the Nand function. From that starting point, you build successively more
complex gates and circuits until you arrive at a general-purpose, programmable computer
that can run games such as Tetris.

1 Introduction

Video by creators of Nand to Tetris: https://yewtu.be/watch?v=wT15wRDTOCU
In this video, the creators of Nand to Tetris, Professor Nisan and Professor Schocken,
explain the project.

1.1 Today’s Core Question
e How to start with Nand to Tetris?

This presentation serves as starting point for the projects of Nand to Tetris, which form
the basis for the first part of IT Systems.
1.2 Learning Objectives

e Build simple chips with HDL

e Simulate chips in Hardware Simulator

Please recall the importance of learning objectives.

In general, tasks in class and quizzes in Learnweb will support your learning towards these
goals. Please do not hesitate to ask if questions arise.

1.3 Retrieval Practice

e What do you remember about Part 1 of IT Systems?

e Other parts?

Questions on retrieval practice slides are meant to be answered by you before you continue.
They offer learning opportunities and stimulate meta-cognitive processes.

What do you remember about Part 1 of IT Systems?
What else will be covered in IT Systems?

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

https://www.nand2tetris.org/
https://yewtu.be/watch?v=wTl5wRDT0CU
https://oer.gitlab.io/oer-courses/it-systems/02-Nand2Tetris.html
https://gitlab.com/oer/oer-courses/it-systems
https://gitlab.com/oer/oer-courses/it-systems

1.4 Recall: Goal of Part 1

e Recall: Build general-purpose, programmable computer; here, the
Hack platform

Computer Hardware

Abstract Interface
(Machine Language,
Instruction Set Architecture)

Computer Platform

consists of

A

Abstract Interface
(HDL)

Chips, Circuits

consist of

4

Abstract Interface
(HDL)

Logic Gates

(Boolean Logic
as abstraction for
electrical engineering)

Figure 1: Computer hardware with layers of abstraction

— Programmable in machine language
— Built from chips and gates specified in hardware description language
(HDL)
x (Gates are “simple” chips)
— Nand2Tetris with sequence of projects

You already saw that we aim to build a programmable computer, starting from logic gates.
We do so with projects of Nand to Tetris.

Agenda

The agenda of this presentation is as follows. After this introduction, we next turn to a
preview of the Hack computer architecture to get a feeling for the goal of Nand to Tetris.
Then, we look at typical ingredients of Nand to Tetris projects, before we build a first simple
chip, namely the And gate. Subsequently, we point out important project resources. As usual,
conclusions end the presentation.

https://www.nand2tetris.org/

2 Preview

Let us start with a short preview of our target computer architecture.

2.1

Hack Machine Language

e Hack CPU executes instructions in machine language

The brains of computers reside in processing units, or processors for short. In case of
Hack there is a single central processing unit, or CPU. This CPU continuously executes
instructions. Each instruction is just a certain bit pattern, which is interpreted by the
CPU to determine what operation to perform on what operands.

— Each Hack instruction consists of 16 bits

* Consider increment of variable: 1 = i + 1

* Translated into two Hack instructions
* 0000000000010000 (A-instruction, starts with 0, binary number
for 16)
- Human-readable assembly language instruction: @16
- Used here to specify memory (RAM) location for value of
variable
* 1111 110111 001 000 (C-instruction, starts with 1, encodes op-
eration)

- Human-readable assembly language instruction: M=M+1

- 6 red bits specify operation (compute M+1), 3 blue bits specify
where to store the result (in M, the memory location for our
variable)

Here, you see an example how the increment of some variable might be repre-
sented by two instructions in the Hack machine language. Notably, different parts
of the instruction’s bit pattern serve different purposes.

You can ignore the details for now.
Modern processors behave similarly
* Later: Fetch-Decode-Execute Cycle
- Fetch next instruction from memory, decode bits to deter-
mine operation and operands, execute
- Von Neumann architecture (von Neumann 1945)

Similarly to the case of Hack, also modern processors execute architecture-specific
machine instructions, which are fetched from RAM, decoded, and then executed.
This computer architecture is known as von Neumann architecture, following
a seminal description by John von Neumann in 1945.

2.2 Preview: Hack Computer Architecture

Read-Only Memory
Program Counter (ROM)
(PO)

Contains Instructions

Arithmetic
Logic
Cont.rol A Register R — Unit
Logic

/ (ALU)
D Register

Random-Access Memory
(RAM)

Contains Data

Figure 2: “Hack Computer Architecture” under CCO 1.0; from GitLab

This figure shows major elements of the Hack computer architecture, which will be explored
in great detail in upcoming weeks.

In Hack, two types of memory are distinguished: Random-Access Memory, or RAM
for short, and Read-Only Memory, ROM for short. Random-access means that data can be
read and changed in any order, at the same speed irrespective of the location, while read-only
means that such memory receives its contents upon fabrication, which can only be read, again
in any order, but not be changed. Data items in memory are equal-sized bit strings, e.g., of
length 8 bits to form bytes, or words of 16 bits in Hack. Addresses specify which data item
to read or write.

Octagons visualize active components, in particular the Arithmetic Logic Unit, ALU
for short, which performs computations and is the major part of the computer’s CPU. The
ALU executes operations that are specified by instructions which in turn are retrieved from
ROM. Depending on the specific instruction, a control logic determines on what operands the
ALU operates, including values stored in registers or in RAM, and if and where to store a
result.

In addition, registers are small storage devices whose size and number depends on the
architecture of the computer. In Hack, the following three registers exist, each of which
contains a word of 16 bits:

First, the program counter stores the address of the next instruction to execute. Thus,
this register is wired to the ROM’s address input.

Second and third, the registers A and D can store addresses as well as inputs for and
results of ALU operations.

Similarly to Hack, modern computers contain processing units, registers, and memory.
Differently from Hack, RAM stores not only data but also instructions. Thus, in our com-
puters, we can simply load new programs into RAM to execute them, while in Hack ROM

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/hack-computer.tex

chips would have to be replaced. In fact, out computers follow the model of the von Neumann
architecture mentioned previously.

3 Projects of Nand2Tetris

Let us see in more detail what to expect in the Nand to Tetris projects.

3.1 What to Expect in a Project

e Projects focus on successively more complex chips

Our goal is to build a digital computer in a sequence of projects, which aim to build
successively more complex chips.

— From simple logic gates to entire computer

We start from a simple logic gate for the Boolean function Nand, and we end at
a programmable computer.

— Digital/binary devices with bit as basic unit of information

* Bit = Logical state with two values: true/false or 1/0
x Data and instructions to be represented as sequences of bits

Boolean logic is a suitable starting point for building computers as we consider
electrical devices starting from two basic states, namely electrical current being
present or not. These two states can be interpreted a a single bit of information,
carrying either a Boolean value true or false, or alternatively an Integer value 1
or 0.

While we first manipulate individual bits based on logical operations, we later
see how to encode numbers and machine instructions with sequences of bits, for
which you saw a sketch on an earlier slide.

— Chips come with specifications/interfaces (and tests)
* What to do. Abstraction!

All the chips will come with specifications and interfaces specifying what
each chip is supposed to do. Your task is to come up with an implementation
specifying how to perform those operations. Clearly, those specifications provide
a level of abstraction over the implementation.

— Results/implementations for each project are building blocks for sub-
sequent ones

x Abstraction and modularity!

Then, you will use your implementations in subsequent projects as building
blocks for even more complex pieces of the computer. Again, this provides a
level of abstraction and also modularity.

Thus, we break down the complex task of building a computer into more man-
ageable modular units.

— You work on projects individually

* Without immediate impact on grading, but lasting impact on
brains (and, thus, on exam results)

* (Solutions can be found on the web)

As a side note, you work on those projects individually, and we do not look at
your results. Thus, the project work does not have an immediate impact on
grading, but it will have a lasting impact on your brain, and therefore also on
the grading in the final exam. In case you get stuck, note that you will be able
to find solutions out there on the web.

3.2 What to Expect in Project 1
e Project 1

1. Given: Nand(x, y), false

x y Nand(x,y)
0 0 1
0 1 1
1 0 1
1 1 0

— Nand is a binary Boolean function
* Specified by truth table to right
* 0 represents false, 1 represents true

In Project 1, we start from Nand and false. Thus, we suppose that a Nand gate as
well as the constant false are given to us. In reality, gates are usually fabricated
from different types of transistors, which is beyond class topics. Also, we do not
consider quantum computing.

Here you see the notation Nand of x and y, which indicates that Nand can be
understood as binary function, i.e., as function that takes two arguments. As
those arguments are interpreted as Boolean values, Nand is a binary Boolean
function.

Boolean functions can be specified by truth tables, such as the one shown here.
Truth tables specify what output value is computed by the function for each of
the possible input value combinations.

The truth table for Nand contains four rows because Nand is a function with
two arguments, each of which can have either of two values, for a total of four
combinations. We see that Nand of x and y results in 1 (or True) unless both
arguments have the value 1 (or True).

2. Learn about Boolean logic
Later on, you will learn about Boolean logic and build successively more complex
logic gates and chips, starting from Nand. Some possible steps are outlined next.

3. Implement sequence of chips (from specifications)
(a) Not(x)
— Not flips its argument: true = Not(false),false = Not(true)

— Implementation: Not(x) = Nand(x, x)
First, using just Nand, we can build a chip for the function Not, which takes
a single Boolean value as input argument and flips it, i.e., Not turns 1 into
0 and vice versa.
Please take a moment to convince yourself that Not of x equals Nand of x
with itself.
Besides, Not can compute true from false, which is why we can say that
we start our journey towards a computer only from Nand and false.

(b) And
— True if and only if all arguments are true; revisited subse-
quently
Having a chip for Not in addition to Nand, it makes sense to build a chip for

the And function, which only produces 1 as output if all input arguments are
equal to 1.

(c¢) Xor, Or, Mux, and several more. ..

As next steps, more chips can be built, including additional Boolean functions and so-
called multiplexors.

Project 1 asks you to implement several chips, and subsequent slides provide an outlook
of the general approach using examples of the And gate.

4 And Gate

Let us now look at an implementation of the And gate, starting from its specification.

4.1 Specification of And Gate

e Three files for binary function And(a, b)
Chips in Nand To Tetris typically come with three files as follows.

1. HDL file with interface and spec-
ification, And.hdl

// This file is part of www.nand2tetris.org

// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.

// File name: projects/01/And.hdl

/%%
* And gate:
* out = 1 if (a == 1 and b == 1)
* 0 otherwise
*/
CHIP And {
IN a, b;
0UT out;
PARTS:
// Put your code here:
}

Most importantly, an HDL file describes the interface of a chip in terms of input and
output pins, here starting at line 12. In addition, a comment in lines 6 to 10 specifies
the expected behavior. Here, the output should be 1 exactly if both inputs are 1.

2. File And.cmp

a b out
0 0 0
0 1 0
1 0 0
1 1 1

— Test cases (here, truth ta-
ble)

Second, test cases specify what the chip
under construction should compute for
given inputs.

3. File And.tst

— Test file for hardware simu-
lator

— To check implementation
against test cases
Finally, a test script can compare ex-

pected results against actually com-
puted values.

4.2 Implementation of And Gate (1/3)
e What an And gate should do

— Specification: out == 1 if and only if a == b == 1

And — out

Figure 3: Figure under CCO 1.0

— Interface in HDL skeleton: And.hdl

CHIP And {
IN a, b;
0UT out;

PARTS:
// Put your code here:

3

Our goal is to create a chip with two inputs and one output that satisfies the specification
shown here. Please verify on your own that this specification is equivalent to the truth table
of the previous slide.

With Nand To Tetris, specifications are given as comments in the chip’s HDL skeleton,
which also specifies the interface in terms of input and output pins.

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/and-a-b-box.tex
https://creativecommons.org/publicdomain/zero/1.0/

4.3 Implementation of And Gate (2/3)
e Idea to implement And gate

— Gate logic: And(a, b) = Not(Nand(a, b))

Nand p ab Not out

Figure 4: Figure under CCO 1.0

o W

— Interface in HDL skeleton: And.hdl

CHIP And {
IN a, b;
0UT out;

PARTS:
// Put your code here:
}
We build gates and more complex chips starting from previously built ones. As stated on
an earlier slide, the Not gate should be our starting point. Building on Nand and Not, here we
see a logical formula to express And.

Please convince yourself that this formula is correct.
Besides, we see how we can wire a Nand gate with a Not gate to fill the previous black box

for the And gate.

4.4 TImplementation of And Gate (3/3)
¢ Implementation of And gate

— Gate logic: And(a, b) = Not(Nand(a, b))

b Nand p ab Not out

Figure 5: Figure under CCO 1.0

9]

— Completed HDL file: And.hdl

CHIP And {
IN a, b;
0UT out;

PARTS:
Nand(a = a, b = b, out = aNandB);
Not(in = aNandB, out = out);
}

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/and-a-b-impl.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/and-a-b-impl.tex
https://creativecommons.org/publicdomain/zero/1.0/

5.1

e Previous And implementation in Hardware Simulator

Finally, we write down the wiring of Nand and Not in terms of HDL.

Note that we can give arbitrary names to internal pins, for example, we can assign a name

of our choice to the output of Nand. Then, we use that name as input for Not. That way, Nand

and Not are connected.

In contrast, the output of Not is given the name out, which is also the output of the

gate.

5 Nand To Tetris Resources

e Download Java software: https://www.nand2tetris.org/software

— ZIP archive, contains tools and project files
* I had to do this in the tools subdirectory: chmod u+x *.sh

— We start with the Hardware Simulator

— (Later on, we also use the CPU Emulator)

overall And gate. That way, we say that the output of Not is really the output of the overall

Download the software now. Note the installation instructions, which also explain that
you may need to set proper permissions on executable files.

Hardware

File View Run Help

iz &

Chip Na... And

Simulator

Y .o

——

Fast |Program flow

Animate:

ormat: Vi

£ ew
|[pecimal] | [Seript [~

Input pins Output pins
Name | Value Name | Value
a lo out | 1
b 1
HDL Internal pins
// File name: projects/0L/And.hd4 | Name | Value

o
* and gate: out = 1 if {a==l al
*

CHIP And {
IN a, b;
OuT out;

PARTS:
Nand{a = a, b = b, out
Not(in = aNandB, out =

[v]

aNandB |

=)

Toad And.hdl,
output-file And.out.
conpare-to And.cmp,

set a 0,
set b o,
eval,

output:

set a 0,
set b 1,
eval,

output:

set a 1,
set b o,
eval,

output:

set a 1,
set b 1,
eval,

output:

/7 This file is part of the materials accompanying the book
// "The Elenents of Computing Systens® by Nisan and Schocken,
7/ MIT Press. Book site: www.idc.ac.il/tecs

7/ File name: projects/6l/and.tst

output-1ist a%B3.1.3 b%83.1.3 outsB3.1.3;

‘End of script - Comparison ended successfully

Figure 6: “Screenshot of Hardware Simulator for Nand to Tetris” under GPLv2;

from GitLab

— Major window parts
x HDL file in lower left, test script on right

* Values of “Input pins” can be entered, resulting “Output pins’

and “Internal pins” can be computed

10

)

https://www.nand2tetris.org/software
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://gitlab.com/oer/figures/-/blob/main/screenshots/2024-03-19-Hardware-Simulator.png

* Note message area at bottom. If not shown, resize window!

Here you see the Hardware Simulator after the test script for the And implementation was
executed successfully. Try it out yourself!

Note that the message area at the bottom of the screenshot currently shows that the test
script ended successfully. It might also show error messages, for example, if your files contain
syntax errors. Maybe you need to resize the window to make that area visible.

5.2 Textbook for Nand to Tetris
e (Nisan and Schocken 2005) The Elements of Computing Systems
— Book chapters are available online: https://www.nand2tetris.org/
course

* Hyperlinked from “reading person icons”
* We use Chapters/Projects 1, 2, 4, 5

e Download chapters now, start to read and work on Project 1

— Note “Tips” and “Steps” at end of Chapter 1

Nand to Tetris is explained in the book mentioned here. Have a quick look now, read it
later.

6 Conclusions

Let us conclude.

6.1 A Related Story, 2021
e From Nand to Zero-Day Exploit

— Google Project Zero on attack software targeting iPhones
* Discussion with hyperlink to https://www.nand2tetris.org/!
* Summary
- NSO Group used logic operations (And, Or, Xor, Xnor; func-

tionally complete) of an image format (JBIG2, mostly out-
dated) to hijack iPhones

- 70,000 segment commands to define computer architecture
with registers and 64-bit adder

* Quote
- “The bootstrapping operations for the sandbox escape ex-
ploit are written to run on this logic circuit and the whole
thing runs in this weird, emulated environment created out
of a single decompression pass through a JBIG2 stream. It’s
pretty incredible, and at the same time, pretty terrifying.”
— Quotes regarding working at Project Zero
x “learn about coding and how computers work”
* “learning the fundamentals of programming, operating systems,
and machine architecture is a great starting point”

Beyond learning objectives you may be interested in the story mentioned here. Maybe
read the blog post as well.

11

https://www.nand2tetris.org/course
https://www.nand2tetris.org/course
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://www.nand2tetris.org/
https://en.wikipedia.org/wiki/NSO_Group
https://googleprojectzero.blogspot.com/p/working-at-project-zero.html

6.2 Summary

e Nand to Tetris guides you to build a computer

— Based on abstraction and modularity

— Weekly projects, with guidance from us

Nand to Tetris is really about building, and thereby understanding, computers. This
complex task will be broken down into manageable units thanks to abstraction, modularity,
and help.

6.3 Q&A

Figure 7: “Uncovering questions” under CCO 1.0; background changed from
Pixabay

Please do not hesitate to ask!

Bibliography

Neumann, John von. 1945. “First Draft of a Report on the EDVAC.” University
of Pennsylvania. https://web.mit.edu/STS.035/www/PDFs/edvac.pdf.

Nisan, Noam, and Shimon Schocken. 2005. The Elements of Computing Sys-
tems: Building a Modern Computer from First Principles. The MIT Press.
https://www.nand2tetris.org/.

The bibliography contains references used in this presentation.

License Information

Source files are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

Except where otherwise noted, the work “Nand2Tetris”, (©) 2024 Jens Lecht-
enborger, is published under the Creative Commons license CC BY-SA 4.0.

12

https://creativecommons.org/publicdomain/zero/1.0/
https://pixabay.com/en/question-mark-question-help-2314109/
https://web.mit.edu/STS.035/www/PDFs/edvac.pdf
https://www.nand2tetris.org/
https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

This presentation is distributed as Open Educational Resource under freedom granting
license terms.

13

	Introduction
	Today’s Core Question
	Learning Objectives
	Retrieval Practice
	Recall: Goal of Part 1

	Preview
	Hack Machine Language
	Preview: Hack Computer Architecture

	Projects of Nand2Tetris
	What to Expect in a Project
	What to Expect in Project 1

	And Gate
	Specification of And Gate
	Implementation of And Gate (1/3)
	Implementation of And Gate (2/3)
	Implementation of And Gate (3/3)

	Nand To Tetris Resources
	Hardware Simulator
	Textbook for Nand to Tetris

	Conclusions
	A Related Story, 2021
	Summary
	Q&A

