Nand2Tetris 2

IT Systems, Summer Term 2026
Dr. Matthes Elstermann

In the first part of our course, you will build a computer in a software simulator, which is part of the project Nand2Tetris.
As the name suggests, you start from a simple logic gate that implements the Nand function. From that starting point, you build
successively more complex gates and circuits until you arrive at a general-purpose, programmable computer that can run games
such as Tetris.

1 Introduction

Video by co-creator of Nand2Tetris

1.1 Today’s Core Question
e How to start with Nand2Tetris?

This presentation serves as starting point for the projects of Nand2Tetris, which form the basis for the first part of IT Systems.

1.2 Learning Objectives
e Build simple chips with HDL
e Simulate chips in Hardware Simulator
Please recall the importance of learning objectives.

In general, tasks in class and quizzes in Learnweb will support your learning towards these goals. Please do not hesitate to ask
if questions arise.

1.3 Retrieval Practice
e What do you remember about Part 1 of I'T" Systems?
e Other parts?
Questions on retrieval practice slides are meant to be answered by you before you continue. They offer learning opportunities
and stimulate meta-cognitive processes.

What do you remember about Part 1 of IT Systems?
What else will be covered in IT Systems?

1.4 Recall: Goal of Part 1

e Recall: Build general-purpose, programmable computer; here, the Hack platform

IThis PDF document is an inferior version of an OER in HTML format; free/libre Org mode source repository.
2Material created by Jens Lechtenbérger; see end of document for license information.

https://www.nand2tetris.org/
https://vimeo.com/933453714
https://oer.gitlab.io/oer-courses/it-systems/02-Nand2Tetris.html
https://gitlab.com/oer/oer-courses/it-systems

Computer Hardware

Abstract Interface
(Machine Language,
Instruction Set Architecture)

Computer Platform

consists of

Abstract Interface
(HDL)

Chips, Circuits

consist of

Abstract Interface
(HDL)

Logic Gates

(Boolean Logic
as abstraction for
electrical engineering)

Figure 1: Computer hardware with layers of abstraction

e Programmable in machine language
¢ Built from chips and gates specified in hardware description language (HDL)
¢ (Gates are “simple” chips)

e Nand2Tetris with sequence of projects

You already saw that we aim to build a programmable computer, starting from logic gates. We do so with projects of
Nand2Tetris.

Agenda

The agenda of this presentation is as follows. After this introduction, we next turn to a preview of the Hack computer architecture
to get a feeling for the goal of Nand2Tetris. Then, we look at typical ingredients of Nand2Tetris projects, before we build a
first simple chip, namely the And gate. Subsequently, we point out important project resources. As usual, conclusions end the
presentation.

2 Preview

Let us start with a short preview of our target computer architecture.

2.1 Hack Machine Language

e Hack CPU executes instructions in machine language

https://www.nand2tetris.org/

The brains of computers reside in processing units, or processors for short. In case of Hack there is a single central processing
unit, or CPU. This CPU continuously executes instructions. Each instruction is just a certain bit pattern, which is interpreted
by the CPU to determine what operation to perform on what operands.

e Fach Hack instruction consists of 16 bits

e Consider increment of variable: 1 = i + 1
e Translated into two Hack instructions
e 0000000000010000 (A-instruction, starts with 0, binary number for 16)
« Human-readable assembly language instruction: @16
« Used here to specify memory (RAM) location for value of variable i
e 1111110111001000 (C-instruction, starts with 1, encodes operation)
« Human-readable assembly language instruction: M=M+1

« 6 red bits specify operation (compute M+1), 3 blue bits specify where to store the result (in M, the
memory location for variable i)

Here, you see an example how the increment of some variable might be represented by two instructions in the Hack machine
language. Notably, different parts of the instruction’s bit pattern serve different purposes.

You can ignore the details for now or pause the audio for some explanations in bullet points.

e Modern processors behave similarly

« Fetch next instruction from memory, decode bits to determine operation and operands, execute
« Von Neumann architecture (von Neumann 1945)

Similarly to the case of Hack, also modern processors execute architecture-specific machine instructions, which are fetched
from RAM, decoded, and then executed.

This computer architecture is known as von Neumann architecture, following a seminal description by John von Neumann
in 1945.

2.2 Preview: Hack Computer Architecture

Read-Only Memory
Program Counter (ROM)
(PC)

Contains Instructions

Arithmetic
Logic
Cont_rol A Register — Unit
Logic
(ALU)

D Register

Random-Access Memory
(RAM)

Contains Data

Figure 2: “Hack Computer Architecture” under CCO 1.0; from GitLab

This figure shows major elements of the Hack computer architecture, which will be explored in great detail in upcoming weeks.

In Hack, two types of memory are distinguished: Random-Access Memory, or RAM for short, and Read-Only Memory,
ROM for short. Random-access means that data can be read and changed in any order, at the same speed irrespective of the
location, while read-only means that such memory receives its contents upon fabrication, which can only be read, again in any
order, but not be changed. Data items in memory are equal-sized bit strings, e.g., of length 8 bits to form bytes, or words of 16
bits in Hack. Addresses specify which data item to read or write.

Octagons visualize active components, in particular the Arithmetic Logic Unit, ALU for short, which performs computations
and is the major part of the computer’s CPU. The ALU executes operations that are specified by instructions which in turn are
retrieved from ROM. Depending on the specific instruction, a control logic determines on what operands the ALU operates, including
values stored in registers or in RAM, and if and where to store a result.

In addition, registers are small storage devices whose size and number depends on the architecture of the computer. In Hack,
the following three registers exist, each of which contains a word of 16 bits:

First, the program counter stores the address of the next instruction to execute. Thus, this register is wired to the ROM’s
address input.

Second and third, the registers A and D can store addresses as well as inputs for and results of ALU operations.

Similarly to Hack, modern computers contain processing units, registers, and memory. Differently from Hack, RAM stores not
only data but also instructions. Thus, in our computers, we can simply load new programs into RAM to execute them, while in
Hack, ROM chips would have to be replaced. In fact, out computers follow the model of the von Neumann architecture mentioned
previously.

3 Projects of Nand2Tetris

Let us see in more detail what to expect in the Nand2Tetris projects.

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/hack-computer.tex

3.1 What to Expect in a Project

e Projects focus on successively more complex chips

Our goal is to build a digital computer in a sequence of projects, which aim to build successively more complex chips.

e From simple logic gates to entire computer
We start from a simple logic gate for the Boolean function Nand, and we end at a programmable computer.

¢ Digital/binary devices with bit as basic unit of information

e Bit = Logical state with two values: true/false or 1/0
e Data and instructions to be represented as sequences of bits

Boolean logic is a suitable starting point for building computers as we consider electrical devices starting from two basic states,
namely electrical current being present or not. These two states can be interpreted a a single bit of information, carrying
either a Boolean value true or false, or alternatively an Integer value 1 or 0.

While we first manipulate individual bits based on logical operations, we later see how to encode numbers and machine
instructions with sequences of bits, for which you saw a sketch on an earlier slide.

e Chips come with specifications/interfaces (and tests)

e What to do. Abstraction!

All the chips will come with specifications and interfaces specifying what each chip is supposed to do. Your task is to
come up with an implementation specifying how to perform those operations. Clearly, those specifications provide a level
of abstraction over the implementation.

¢ Results/implementations for each project are building blocks for subsequent ones

e Abstraction and modularity!

Then, you will use your implementations in subsequent projects as building blocks for even more complex pieces of the
computer. Again, this provides a level of abstraction and also modularity.

Thus, we break down the complex task of building a computer into more manageable modular units.
¢ You work on projects individually

e Without immediate impact on grading, but lasting impact on brains (and, thus, on exam results)
e (Solutions can be found on the web)

As a side note, you work on those projects individually, and we do not look at your results. Thus, the project work does not
have an immediate impact on grading, but it will have a lasting impact on your brain, and therefore also on the grading in
the final exam. In case you get stuck, note that you will be able to find solutions out there on the web.

3.2 What to Expect in Project 1
e Project 1

1. Given: Nand(x, y), false

x y Nand(x, y)
0 0 1
0 1 1
1 0 1
1 1 0

e Nand is a binary Boolean function
e Specified by truth table to right
e O represents false, 1 represents true

In Project 1, we start from Nand and false. Thus, we suppose that a Nand gate as well as the constant false are given to
us. In reality, gates are usually fabricated from different types of transistors, which is beyond class topics. Also, we do not
consider quantum computing.

Here you see the notation Nand of x and y, which indicates that Nand can be understood as binary function, i.e., as function
that takes two arguments. As those arguments are interpreted as Boolean values, Nand is a binary Boolean function.
Boolean functions can be specified by truth tables, such as the one shown here. Truth tables specify what output value is
computed by the function for each of the possible input value combinations.

The truth table for Nand contains four rows because Nand is a function with two arguments, each of which can have either of

two values, for a total of four combinations. We see that Nand of x and y results in 1 (or True) unless both arguments have
the value 1 (or True).

2. Learn about Boolean logic

Later on, you will learn about Boolean logic and build successively more complex logic gates and chips, starting from Nand.
Some possible steps are outlined next.

3. Implement sequence of chips (from specifications)

(a)

(b)

(c)

Not (x)

e Not flips its argument: true = Not(false), false = Not(true)

¢ Implementation: Not(x) = Nand(x, x)

First, using just Nand, we can build a chip for the function Not, which takes a single Boolean value as input argument
and flips it, i.e., Not turns 1 into 0 and vice versa.

Please take a moment to convince yourself that Not of x equals Nand of x with itself.

Besides, Not can compute true from false, which is why we can say that we start our journey towards a computer
only from Nand and false.

And

e True if and only if all arguments are true; revisited subsequently

Having a chip for Not in addition to Nand, it makes sense to build a chip for the And function, which only produces 1 as
output if all input arguments are equal to 1.

Xor, Or, Mux, and several more. ..

As next steps, more chips can be built, including additional Boolean functions and so-called multiplexors.
Project 1 asks you to implement several chips, and subsequent slides provide an outlook of the general approach using examples
of the And gate.

4 And Gate

Let us now

look at an implementation of the And gate, starting from its specification.

4.1 Specification of And Gate

e Three files for binary function And(a, b)

Chips in

Nand2Tetris typically come with three files as follows.

1. HDL file with interface and specification, And.hd1l 2. File And.cmp

// This file is part of www.nand2tetris.org a b out
// and the book "The Elements of Computing Systems" 0 0 0
// by Nisan and Schocken, MIT Press. 0 1 0
// File name: projects/01/And.hdl 1 0 0
1 1 1
/%%
* And gate: e Test cases (here, truth table)
¥ out = 1 if (a == 1 and b == 1)
* 0 otherwise Second, test cases specify what the chip under construction
*/ should compute for given inputs.
3. File And.tst
CHIP And {
IN a, b; e Test file for hardware simulator
OUT out; e To check implementation against test cases
PARTS: Finally, a test script can compare expected results against
// Put your code here: actually computed values.
}

Most importantly, an HDL file describes the interface of a chip
in terms of input and output pins, here starting at line 12. In

addition,

a comment in lines 6 to 10 specifies the expected be-

havior. Here, the output should be 1 exactly if both inputs are

1.

4.2 Implementation of And Gate (1/3)
e What an And gate should do

e Specification: out == 1 if and only if a == b ==

b—| And — out

Figure 3: Figure under CCO 1.0

e Interface in HDL skeleton: And.hdl

CHIP And {
IN a, b;
0UT out;

PARTS:
// Put your code here:

Our goal is to create a chip with two inputs and one output that satisfies the specification shown here. Please verify on your
own that this specification is equivalent to the truth table of the previous slide.

With Nand2Tetris, specifications are given as comments in the chip’s HDL skeleton, which also specifies the interface in terms
of input and output pins.

4.3 Implementation of And Gate (2/3)
e Idea to implement And gate

¢ Gate logic: And(a, b) = Not(Nand(a, b))

b Nand ab Not — out

Figure 4: Figure under CCO 1.0

e Interface in HDL skeleton: And.hdl

CHIP And {
IN a, b;
0UT out;

PARTS:
// Put your code here:

We build gates and more complex chips starting from previously built ones. As stated on an earlier slide, the Not gate should
be our starting point. Building on Nand and Not, here we see a logical formula to express And.

Please convince yourself that this formula is correct.

Besides, we see how we can wire a Nand gate with a Not gate to fill the previous black box for the And gate.

4.4 Implementation of And Gate (3/3)
e Implementation of And gate

e Gate logic: And(a, b) Not (Nand(a, b))

b Nand ab Not — out

Figure 5: Figure under CCO 1.0

https://gitlab.com/oer/figures/-/blob/main/gates/tikz/and-a-b-box.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/and-a-b-impl.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/-/blob/main/gates/tikz/and-a-b-impl.tex
https://creativecommons.org/publicdomain/zero/1.0/

e Completed HDL file: And.hdl

CHIP And {
IN a, b;
0UT out;

PARTS:
Nand(a = a, b = b, out = aNandB);
Not(in = aNandB, out = out);

Finally, we write down the wiring of Nand and Not in terms of HDL.

Note that we can give arbitrary names to internal pins, for example, we can assign a name of our choice to the output of Nand.
Then, we use that name as input for Not. That way, Nand and Not are connected.

In contrast, the output of Not is given the name out, which is also the output of the overall And gate. That way, we say that
the output of Not is really the output of the overall gate.

5 Nand2Tetris Resources

The project Nand2Tetris provides various resources, in particular software with documentation and a textbook.

5.1 Nand To Tetris Software

e Download Java software: https://www.nand2tetris.org/software

e (Java runtime needed. Install first.)

ZIP archive, contains tools and project files
¢ I had to do this in the tools subdirectory: chmod u+x *.sh

e We start with the Hardware Simulator

(Later on, we also use the CPU Emulator)

e Nowadays, the Nand2Tetris team recommends an online IDE: https://nand2tetris.github.io/web-ide/
chip/
e Try above Java variant as exercise in digital sovereignty
Download the software now. This requires a Java runtime on your computer. Also note the installation instructions for
Nand2Tetris, which explain that you may need to set proper permissions on executable files.

If you do not want to install the software, an online environment is available as well. Your instructor prefers offline programs
over online services in general for digital sovereignty.

5.2 Hardware Simulator

e Previous And implementation in Hardware Simulator

https://www.nand2tetris.org/software
https://nand2tetris.github.io/web-ide/chip/
https://nand2tetris.github.io/web-ide/chip/

File View Run Help
= —L= snimate: Format: View:
m « ? Slow Fast |Program flow |v||DeC|maI|vHScr|pt |v

Chip Na... And T /f This file is part of the materials accompanying the book
/7 "The Elements of Computing Systems" by Nisan and Schocken,
// MIT Press. Book site: www.idc.ac.1l/tecs
Input pins Output pins // File name: projects/@l/And.tst
Name Value Name \ Value

a) out | 7| |load And.hdl,

b 1 output-file And.out,
compare-to And.cmp,
output-list a%B3.1.3 b%B3.1.3 out%B3.1.3;

set a 0,
set b 0,
eval,

output;

set a 0,
set b 1,
eval,

output;

HDL Internal pins set a 1,
- - set b 0,
// File name: projects/0l/And.hg= Name ‘ Value eval,

ahandB | O loutput:

f**
+ And gate: out = 1 if {a==1 an | set a 1,
*y set b 1,

eval,
CHIP And { output:

IN a, b;
OuT out;

PARTS:
Nand (a
Not(in

a, b =>b, out 4
aNandB, out =

[[»

[l i [»

\End of script - Comparison ended successfully

Figure 6: “Screenshot of Hardware Simulator for Nand to Tetris” under GPLv2; from GitLab

e Major window parts

e HDL file in lower left, test script on right
e Values of “Input pins” can be entered, resulting “Output pins” and “Internal pins” can be computed

e Note message area at bottom. If not shown, resize window!
Here you see the Hardware Simulator after the test script for the And implementation was executed successfully. Try it out
yourself!
Note that the message area at the bottom of the screenshot currently shows that the test script ended successfully. It might

also show error messages, for example, if your files contain syntax errors. Maybe you need to resize the window to make that area
visible.

5.3 Textbook for Nand2Tetris
e (Nisan and Schocken 2005) The Elements of Computing Systems

e Book chapters are available online: https://www.nand2tetris.org/course

¢ Hyperlinked from “reading person icons”
e We use Chapters/Projects 1, 2, 4, 5

e Download chapters now, start to read and work on Project 1
e Note “Tips” and “Steps” at end of Chapter 1

Nand2Tetris is explained in the book mentioned here. Have a quick look now, read it later.

6 Conclusions

Let us conclude.

6.1 A Related Story, 2021
e From Nand to Zero-Day Exploit

e Google Project Zero on attack software targeting iPhones

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://gitlab.com/oer/figures/-/blob/main/screenshots/2024-03-19-Hardware-Simulator.png
https://www.nand2tetris.org/course
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

¢ Discussion with hyperlink to https://www.nand2tetris.org/!
e Summary

« NSO Group used logic operations (And, Or, Xor, Xnor; functionally complete) of an image format
(JBIG2, mostly outdated) to hijack iPhones

« 70,000 segment commands to define computer architecture with registers and 64-bit adder
¢ Quote

« “The bootstrapping operations for the sandbox escape exploit are written to run on this logic circuit
and the whole thing runs in this weird, emulated environment created out of a single decompression
pass through a JBIG2 stream. It’s pretty incredible, and at the same time, pretty terrifying.”

¢ Quotes regarding working at Project Zero

¢ “learn about coding and how computers work”

e “learning the fundamentals of programming, operating systems, and machine architecture is a great
starting point”

Beyond learning objectives you may be interested in the story mentioned here. Maybe read the blog post as well.

6.2 Summary

e Nand2Tetris guides you to build a computer

¢ Based on abstraction and modularity

e Weekly projects, with guidance from us

Nand2Tetris is really about building, and thereby understanding, computers. This complex task will be broken down into
manageable units thanks to abstraction, modularity, and help.

6.3 Q&A

—-—/

Figure 7: “Uncovering questions” under CCO 1.0; background changed from Pixabay
Please do not hesitate to ask!

Bibliography

Neumann, John von. 1945. “First Draft of a Report on the EDVAC.” University of Pennsylvania. https:
//web.mit.edu/STS.035/www/PDFs/edvac.pdf.
Nisan, Noam, and Shimon Schocken. 2005. The Elements of Computing Systems: Building a Modern Computer

from First Principles. The MIT Press. https://www.nand2tetris.org/.
The bibliography contains references used in this presentation.

10

https://www.nand2tetris.org/
https://en.wikipedia.org/wiki/NSO_Group
https://googleprojectzero.blogspot.com/p/working-at-project-zero.html
https://creativecommons.org/publicdomain/zero/1.0/
https://pixabay.com/en/question-mark-question-help-2314109/
https://web.mit.edu/STS.035/www/PDFs/edvac.pdf
https://web.mit.edu/STS.035/www/PDFs/edvac.pdf
https://www.nand2tetris.org/

License Information

Source files are available on GitLab (check out embedded submodules) under free licenses. Icons of custom
controls are by @fontawesome, released under CC BY 4.0.

Except where otherwise noted, the work “Nand2Tetris”, (C) 2024-2025 Jens Lechtenborger, is published under
the Creative Commons license CC BY-SA 4.0.

This presentation is distributed as Open Educational Resource under freedom granting license terms.
Source files are available on GitLab, where the author would be happy about contributions, e.g., in terms of issues and merge
requests.

11

https://gitlab.com/oer/oer-courses/it-systems
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Today’s Core Question
	Learning Objectives
	Retrieval Practice
	Recall: Goal of Part 1

	Preview
	Hack Machine Language
	Preview: Hack Computer Architecture

	Projects of Nand2Tetris
	What to Expect in a Project
	What to Expect in Project 1

	And Gate
	Specification of And Gate
	Implementation of And Gate (1/3)
	Implementation of And Gate (2/3)
	Implementation of And Gate (3/3)

	Nand2Tetris Resources
	Nand To Tetris Software
	Hardware Simulator
	Textbook for Nand2Tetris

	Conclusions
	A Related Story, 2021
	Summary
	Q&A

