
Git Exercise

Jens Lechtenbörger

Summer Term 2023

Contents

1 Introduction 1

2 Preparation 1

3 Tasks 2

4 Further remarks 6

5 What's next 6

6 Git for Exercise Points 6

1 Introduction

This document describes a group exercise, which some students perceive to be
challenging. Please do not hesitate to ask early. Your �rst steps with Git will
seem unfamiliar, but my goal is to help you in this unfamiliar terrain. Git is a
powerful tool with many commands and options (GitLab even more so), but the
basic work�ow should not be hard to follow. (As an aside: If you really go for
Git, you probably want to do that embedded in your daily work environment,
where the most important Git operations are available through some UI. My
daily work environment is GNU Emacs with Magit.)

On our GitLab server, I will assign each of you as �Reporter� to my project
�cacs-2025�, and GitLab will notify you once that happened. (This will take some
time because our admins need to create your account �rst, before you need to
change your university password and log into the GitLab server once, before I
assign you manually . . . ) Then, you can start with this task, which is meant to
practice the feature branch work�ow mentioned in the Git Introduction.

2 Preparation

Install and setup Git as suggested in this Quickstart for GitLab.
Watch this video, which explains general concepts of Git and shows (in its

second part) Git operations that are similar to the ones below.
Brie�y, a Git repository keeps track of changes on �les. Changes are persisted

with commit operations, each of which is executed on a speci�c branch. As

1

https://magit.vc/
https://oer.gitlab.io/oer-courses/cacs/videos/Git-Examples.mp4


explained elsewhere in more detail, a branch in Git represents a speci�c version
of all �les in the repository, which can be developed independently from any
other branch (e.g., to add and test a new feature without disturbing others).
The default branch of our project is called main.

In general, for questions that I have related to Git, Stack Over�ow has
answers. You may want to ask in a course-related forum, though.

3 Tasks

This task is part of a group exercise. In the following, �M1�, �M2�, . . . indicate
actions to be performed by di�erent group members, while �All� indicates actions
for everyone.

I suggest that you work on this as group to discuss who does what to help
each other; sometimes I suggest to share screens (physically or virtually).

(You can also perform the following steps individually, e.g., by copying your
cloned directory into multiple directories, one for each group member. Then,
you can perform each step in the directory for a �simulated� group member.)

3.1 Part 1: Fork and clone

1. Determine group member M1 who forks project �cacs-2025�.

2. M1: Go to my project and perform the fork (see screenshot, which shows
my browser's upper right). Default settings should be �ne.

In your fork, assign the remaining group members as Maintainers and
me (my username is lechtej) as Reporter or higher. (Maintainers can
do everything in a project, while Developers cannot push to the main

or master branch, enforcing to work with other branches. As Guest, I
can neither clone your fork nor see your branch. That would be possible
in other roles, maybe allowing me to help.) To assign members in the
fork, to the left, go to the project's �Manage → Members� (not part of
screenshot), search members and assign roles.

The newly added project members (including me) receive e-mails with the
address of the forked project.

3. All: Check your noti�cation settings (see screenshot, User preferences →
Noti�cations for general settings and bell icon with Noti�cation settings
for visited project), where you can con�gure for what events to receive
e-mails. Maybe �Watch� your own project.

2



Clone the fork to a local directory �cacs-2025�. The necessary address
(starting with git@) is visible under the Clone button (see screenshot)
under �Clone with SSH�.

git clone <use Git address here>

Note that cloning creates a new directory, into which you need to change
before executing Git commands: cd cacs-2025

3.2 Part 2: Understand order of commits, experience and

resolve con�icts

For this part, work on the branch test-push-pull (which you automatically
forked from the upstream project). That branch will be ignored in later parts,
so your speci�c changes of �les do not matter much. Note that commits on a
branch are ordered linearly to follow one another.

1. All: In your cloned project, switch to branch test-push-pull:

git checkout test-push-pull

Then, group members perform di�erent actions and commit afterwards:

M2: Add a new �rst line to README.md (can be random data, will stay
local to your fork).

M3: Add a line to the bottom of README.md.

M4: Also add a new �rst line to README.md (without knowledge of what
M2 does).

M5: Create a new �le test.txt.

Other members (or M1): Create other �les. Coordinate to make sure that
you create �les with di�erent names here (in particular, not test.txt
again).

Everyone: Persist your changes with commit operations in Git's history.
This requires to �rst add the �le(s) whose changes should be included in
the subsequent commit operation:

git add name-of-changed-file

git commit -m "Describe change with message"

Verify among team members that the commits for the above changes suc-
ceed for everyone.

Clearly, your commits violate the requirement of a linear order. (All of
them share the same parent commit.) This is asking for trouble (but can
easily happen in practice if multiple people work on the same branch or if
you clone a repository to multiple devices).

2. All: Prepare to push the changes, i.e., to transfer them to the server.
Make sure that M5 is the fastest to complete the push operation, before
everyone else tries to execute a push operation:

3



git push

Note that pushing fails for everyone after M5 with a rejected error mes-
sage informing that the remote repository contains commits that are un-
known in your local repository.

This happens because your local commits are not linearly ordered but con-
current. Note that Git output suggests git pull to merge those commits.

3. M2: Share your screen, execute git log, and note the most recent com-
mit. Perform git pull (which fetches commits and initiates a merge
operation).

This initiates a merge operation, which adds amerge commit, for which
you need to supply a commit message. Do so. Note that the �le created by
M5 is present now. Execute git status and git log afterwards. Relate
to the purple branch the slide �Key Terms: Branch, Merge�. Discuss.

Note that you see several branches on the slide, while you may believe
to work on one. That belief would be wrong: Each of you works on an
independent local branch with its own commits, which you try to combine
with a second remote branch that potentially includes other commits.

Maybe raise questions in class or in the forum.

Push the changes.

4. M3: Share your screen, perform git pull, including the merge com-
mit. Con�rm that the changes of M5, M2, and M3 are incorporated in
README.md.

Thus, the concurrently created versions were merged successfully by Git.
This is not always the case as you see next.

5. All: What do you expect to happen if M4 pulled commits? Note that M2
and M4 concurrently changed the �rst line of the same �le. How should an
overall integrated result look like? Discuss possible options, then proceed
to the next step.

6. M4: Share your screen, perform git pull. Di�erently from the previous
merge commits, Git now reports a merge con�ict and asks you to repair
the situation manually. Execute git diff. Note that the output contains
so-called con�ict markers to highlight con�icting regions.

Now, it is your task to think about those regions: Should just one be
preserved or both? Should they be combined? Do you come up with a
totally new idea?

Change the �le in whatever way seems most appropriate. Delete the con-
�ict markers. Add, commit, and push.

7. M1 or some other team member who added a new �le: Share your screen
and execute git log, then git pull --rebase. This time, Git initiates
a rebase operation to perform your commit on top of the pulled commits,
without a merge commit. Push your state.

That's it for this part. We do not use branch test-push-pull any further.

4

https://stackoverflow.com/questions/10657315/git-merge-left-head-marks-in-my-files


3.3 Part 3: Work with branches

From now on, you work on branches with the intent of sharing with the entire
class.

1. M2: From main (do git checkout main; this brings you to the clean
state that you forked and did not change so far�if you see commits by
any group member with git log, it may be easiest to clone or fork the
project again for a clean state), create a new branch that collects your
group work for this task, say �g42-task-1�. Create a new sub-directory
(under �cacs-2025�) for your group, e.g., �G42� if you are group G42.

Please restrict all your group's changes to that sub-directory.

As this was missed by several groups in the �rst run, let me repeat:
Create a new branch (e.g., git checkout -b G42-task-1) and a new
sub-directory (e.g., mkdir G42). This task is meant to familiarize you
with the feature branch work�ow, and the directory provides a scope for
your �le names. (Several groups created �les named test.txt. . . )

If you do not create a directory, I will reject your merge requests later on,
asking you to move your �les. (Then, you may want to read git help

mv.) If you do not use a branch, then you need to read about protected
branches at GitLab; note that main is protected by default, and group
members with the role Developer are not allowed to push.

Add a �rst document (which will be shared via my project with the entire
class subsequently, so, please, take some care), either a text �le or some
lightweight markup language; maybe start to document your experiences,
questions, and answers. Commit (maybe more than once) and push the
branch (the �rst push operation of a newly created branch needs option
-u origin like this: git push -u origin G42-task-1).

2. M3: Pull and check out your branch, change the �le more, commit, and
push.

3. M4: Create a merge request in GitLab for your branch into my main

branch. (On the top of your fork's project you should see a suggestion to
create a merge request for your branch. Maybe refresh the page.)

When you create merge requests, please �ll out the title (e.g., Group 42
- Task 1). The description may remain empty here; in a real project you
would explain what you propose to be merged. Note the option �Delete
source branch when merge request is accepted�. Make sure to uncheck it
if you want to keep your branch.

3.4 Part 4

After I merged your branch, my project is ahead of yours. To bring your project
up-to-date (possibly including changes of other groups as well), do the following
(see slide on �git remote�).

M5:

git checkout main

git pull

5

https://en.wikipedia.org/wiki/Scope_(computer_science)
https://docs.gitlab.com/user/project/repository/branches/protected/
https://docs.gitlab.com/user/project/repository/branches/protected/


git remote add upstream <URL of original project>

git fetch upstream

git rebase upstream/main

git push

Note that by default only Maintainers can push to the main branch of repos-
itories, so M5 needs to have that role (assigned above by M1).

You now completed a cycle in the feature branch work�ow (a branch in your
forked project provides a feature for my upstream project), and you updated
your fork with upstream commits. You will practice this work�ow by adding
answers to review questions for upcoming presentations.

4 Further remarks

We work on a playground project here, and it is unlikely that you destroy things
(well, git reset and options that �force� actions may destroy state; you should
not need them). If your local repository seems to be in an inconsistent state,
you could just give that up and clone again (depending on the amount of work
that you did locally; you can also copy �les from the inconsistent state to a new
clone).

Given the above instructions, all group members worked on the same branch,
with strict sequences of pull, commit, and push for di�erent members. You may
prefer to work more independently of each other on di�erent branches, which
you merge on your own. Then, you apply the feature branch work�ow within
your own project.

Again, please do not hesitate to ask in a course-related forum.

5 What's next

You have experienced Git as sample communication and collaboration system
for distributed teams. In the next presentation, you will learn to position Git
as an example of so-called distributed systems, and we will revisit the notions of
consistency and con�ict in that larger context.

6 Git for Exercise Points

In 2025, your group needs to create two merge requests, the �rst one as ex-
plained under Part 3 above, the second one later on to submit your group's
presentation.

For full individual points, make sure that each group member participates
with at least one commit or merge request.

Have fun!

License Information

This document is part of an OER collection to teach basics of distributed sys-
tems. Source code and source �les are available on GitLab under free licenses.

6

https://gitlab.com/oer/oer-courses/cacs
https://en.wikipedia.org/wiki/Free_license


Except where otherwise noted, the work �Git Exercise�, © 2020-2025 Jens
Lechtenbörger, is published under the Creative Commons license CC BY-SA
4.0.

Note: This PDF document is an inferior version of an OER HTML page;
free/libre Org mode source repository.

7

https://lechten.gitlab.io/#me
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://oer.gitlab.io/oer-courses/cacs/texts/Git-Workflow-Instructions.html
https://gitlab.com/oer/oer-courses/cacs

	Introduction
	Preparation
	Tasks
	Further remarks
	What’s next
	Git for Exercise Points

