Web and E-Mail

Jens Lechtenborger

Summer Term 2023

Contents

1 Introduction 1
2 Web 3
3 HTTP 4
4 Server State and Cookies 9
5 Caching 11
6 Proxies 13
7 E-Mail 14
8 Conclusions 17

1 Introduction

1.1 Learning Objectives

e Explain communication patterns for Web and e-mail exchanges

— Perform simple HTTP requests via telnet or gnutls-cli
— Interpret E-Mail headers

e Explain the concept of “stateless servers”
e Explain constraints and advantages of caching

e Discuss alternatives to and weaknesses of e-mail security established by
secure channels between MUA and MTA

1.2 Previously on CACS ...

1.2.1 Communication and Collaboration

e Communication frequently takes place via the Internet

— Telephony

— Instant messaging
— E-Mail

— Social networks
e Collaboration frequently supported by tools using Internet technologies

— All of the above means for communication
— ERP, CRM, e-learning systems
File sharing: Sciebo, etherpad, etc.

Programming (which subsumes file sharing): Git, subversion, etc.

e All of the above are instances of DSs

1.2.2 Recall: Internet Architecture

e “Hourglass design”

Dynamic Host
HyperText Transfer P. Simple Mail Transfer . Gonfiguration P. Domain Name System

HTTP SMTP DHCP DNS

Transport LayerSe 49n Control P. \ User Datagram P.
CP UDP
P
Ethernet 802.11 - DSL

Figure 1: Internet Architecture with narrow waist

e IP is focal point

— “Narrow waist”
— Application independent!
*x Everything over IP

— Network independent!

1.3

*x IP over everything
— No security

* “IP datagrams are like postcards, written with erasable pencils”

Today: HTTP and SMTP at application layer

Today’s Core Questions
What does your browser do when you enter a URI in the address bar?

How does e-mail transfer work?

2 Web

2.1

2.2

History of the Web (1/2)
1945, Vannevar Bush: As we may think

— Memex for information storage

— Associative indexing (Hyperlinks)
1989, article by Tim Berners-Lee

— Distributed hypertext system, “>web« of notes with links”

— Initially for cooperation among physicists at CERN
May 1991

— Distributed information system based on HTML, HTTP, and client
software at CERN

August 1991

— Availability of CERN files announced in alt.hypertext

History of the Web (2/2)
1992, NCSA Web Server available

— National Center for Supercomputing Applications, University of Illi-
nois, Urbana-Champaigne

1993, Mosaic browser created at NCSA

1994, World Wide Web Consortium (W3C) founded by Tim Berners-Lee
— Publication of technical reports and “recommendations”

Now

— Web 2.0, Semantic Web (aka Web 3.0 [Hen09]), cloud computing,
browser as access device

https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.w3.org/History/1989/proposal.html
https://www.w3.org/People/Berners-Lee/1991/08/art-6484.txt
alt.hypertext
https://www.w3.org/

2.3 WWW / ‘Web
e Standards

— W3C (HTML 4 Specification)
* “The World Wide Web (Web) is a network of information re-

sources.”
— HTTP/1.1 Specification (RFC 7230)

* “The Hypertext Transfer Protocol (HTTP) is a stateless application-
level protocol for distributed, collaborative, hypertext informa-
tion systems.”

e Distributed information system

— Client-Server architecture

* Web clients (browsers) and servers exchange HTTP messages
based on Internet standards

— Sample Web standards (application layer of Internet architecture)

* URIs (Uniform Resource Identifiers, next slide)
* HTTP (this presentation)
+ ((X)HTML, CSS)
2.3.1 URI
e URI = Character string to identify entities

— RFC 3986

x Format: <scheme>:<scheme-specific-part>

e Examples from RFC 3986 (some containing DNS names)

http : // wuw.ietf.org /rfc/rfc2396.txt
— 1ldap : //[2001:db8::7]/c=GB7objectClass?one
— mailto : John.Doe@ example.com

— tel : +1-816-555-1212
e Scheme-specific part often structured

— <scheme>://<authority ><path>7<query>#fragment

— E.g.,https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.
html?default-navigation#slide-uri

3 HTTP

3.1 HTTP
e Hypertext Transfer Protocol

— HTTP/1.1, RFC 7230

https://www.w3.org/TR/html4/intro/intro.html
https://tools.ietf.org/html/rfc7230
https://oer.gitlab.io/oer-courses/cacs/Internet.html
https://datatracker.ietf.org/doc/html/rfc3986
https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html?default-navigation#slide-uri
https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html?default-navigation#slide-uri
https://tools.ietf.org/html/rfc7230

* Plain text messages, discussed subsequently
— HTTP/2, RFC 7540
* Adds frame format with compression
— HTTP/3 also upcoming
x Uses QUIC over UDP as transport layer protocol

e Request/response protocol

— Specific message format
— Several access methods
— Requires reliable transport protocol
* Traditionally, TCP/IP with port 80 (or port 443 for HTTPS)

3.2 Excursion: Manual Connections

e HTTP (before HTTP/2) and SMTP are plain text protocols
— With encrypted variants HTTPS and SMTPS (or STARTTLS)
e Enables experiments on the command line

— Type (or copy&paste) request, see server response

— For unencrypted connections, telnet can be used (preinstalled or
available for lots of OSs)

— For encrypted connections, gnutls-cli can be used (part of GnuTLS,
which is free software)

x TLS = Transport Layer Security
- Successor to SSL

- Layer between application layer and TCP, recall Internet ar-
chitecture

- Secure channels based on asymmetric cryptography

3.2.1 Warnings

e Next two slides demonstrate how to type HTTP commands (for an im-
proved understanding of the protocol)

— Subsequent examples with www. informationelle-selbstbestimmung-im-internet.de
require GnuTLS
* Server redirects from port 80 to port 443

— If your manual typing is too slow, connections may time out (e.g.,
“Peer has closed the GnuTLS connection”)

— Also, use of backspace or cursor keys may destroy connections

e Suggestion: Type in text editor and copy&paste into command line

https://tools.ietf.org/html/rfc7540
https://en.wikipedia.org/wiki/HTTP/3
https://w3techs.com/technologies/details/ce-http3
https://en.wikipedia.org/wiki/QUIC
https://oer.gitlab.io/oer-courses/cacs/Internet.html#slide-ip-udp-tcp
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/SMTPS
https://en.wikipedia.org/wiki/STARTTLS
https://www.gnutls.org/
https://oer.gitlab.io/OS/Operating-Systems-Motivation.html#slide-free-software
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://oer.gitlab.io/oer-courses/cacs/Internet.html#slide-internet-architecture
https://oer.gitlab.io/oer-courses/cacs/Internet.html#slide-internet-architecture
https://oer.gitlab.io/oer-courses/cacs/Internet.html#slide-drawing-hybrid-enc

3.2.2 telnet
e Original telnet purpose: Login to remote host

— Insecure plaintext passwords

— Nowadays, remote login performed with Secure Shell, ssh
e Establish TCP connection to destination port

— telnet www.google.de 80 (port 80 for HTTP)

* (For variants without visual feedback possibly followed by ctrl-+
or ctrl-], set localecho [enter]| [enter])

GET / HTTP/1.1 [enter]
Host: www.google.de [enter] [enter]

*
*
* (Screencast)
*

(Context for above lines soon)

— Beware: Buggy telnet implementations may stop sending after first
line (use Wireshark to verify)

Here, you see a sample use of telnet to open a TCP connection to port 80 on a Google
server. You could try out any other number to check on what ports the server is prepared
to talk with you. Port 80 is reserved for HT'TP, which is slowly phased out in favor of the
cryptographically secured variant HTTPS on port 443.

Anyways, once a TCP connection is established successfully, you can send data to the
server by typing it. When typing, you need to “speak” the protocol that is expected by the
server, here HT'TP, and the lines starting with GET as well as with Host are both part of the
HTTP protocol, which is explained on later slides.

Note that you cannot use telnet with encrypted connections as you would need to type
bytes that setup and use cryptographic protocols then. Thus, while you can open a TCP
connection to port 443 with telnet, it is unlikely that you can use that connection by typing
the necessary bytes for cryptographic protocols afterwards.

For cryptographically secured connections, you may want to use the GnuTLS client as
shown on the next slide.

An aside: On the slide, “ctrl-+” means: Press the ctrl key and + simultaneously. Similarly
for other keys.

3.2.3 gnutls-cli
e Establish TLS protected TCP connection with GnuTLS

— Alternative to telnet on previous slide (screencast)

— gnutls-cli --crlf www.informationelle-selbstbestimmung-im-internet.de
* (HTTPS on port 443 by default)
* GET /chaosreader.html HTTP/1.1 [enter]

* Host: www.informationelle-selbstbestimmung-im-internet.de
[enter] [enter]

— SMTP for e-mail, port 587 as alternative to 25

* gnutls-cli --crlf --starttls -p 587 secmail.uni-muenster.de

- (Type ehlo localhost, then starttls; press ctrl-d to en-
ter TLS mode; needs authentication)

The cryptographic protocol suite TLS is used in two major variants.

https://en.wikipedia.org/wiki/Secure_Shell
https://gitlab.com/oer/figures/-/raw/master/DS/http-telnet.gif
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.gnutls.org/
https://gitlab.com/oer/figures/-/raw/master/DS/http-gnutls-cli.gif
https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html#slide-smtp

1. A special port, e.g., 443, is reserved for cryptographically secured connections. The
connecting client (here, GnuTLS) must immediately “talk” a cryptographic protocol.

2. A single port, e.g., 25, supports plaintext as well as cryptographically secured connec-
tions. Here, the client starts with plaintext (as with telnet), but can issue a specific
command (here, starttls followed by ctrl-d) to switch to a cryptographically secured
connection.

e “ctrl-d” means: Press the ctrl key and d simultaneously.

In any case, application data is transmitted through secure channels.

3.3 Excursion: Browser Tools
e Modern browsers offer developer tools
— E.g., press ctrl-shift-I with Firefox

Tools to inspect HTML, CSS, Javascript
— Tools to inspect HTTP traffic (Network tab)

x Live view on browser requests and server responses
- With details on timing, caching, headers

Console with error messages

And much more

3.4 HTTP Messages

e Requests and responses

— Generic message format of RFC 822, 1982 (822—2822—5322)

x Originally for e-mail, extensions for binary data
- Lines end with CRLF, \r\n below (press enter, do not type
this)
— Messages consist of

x Headers
- In HTTP always a distinguished start-line (request or status)
- Then zero or more headers
*+ Empty line
* Optional message body
— Sample GET request (does not have a body)

* GET /chaosreader.html HTTP/1.1\r\n
Host: www.informationelle-selbstbestimmung-im-internet.de\r\n

\r\n
e Excerpt of sample HTTP response to previous GET request

— HTTP/1.1 200 0K\r\n
Date: Wed, 08 Apr 2020 13:30:10 GMT\r\n
Server: Apache\r\n
Last-Modified: Wed, 24 Jul 2019 12:25:46 GMT\r\n
ETag: "2cd1-58e6c6898dce2"\r\n

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322
https://en.wikipedia.org/wiki/Newline

Content-Length: 11473\r\n

more headers omitted

Content-type: text/html; charset=utf-8\r\n
\r\n

HTML code as body

3.5 HTTP Methods

e Case-sensitive (capital letters)

— GET (Request for resource, see section 4.3.1)
— HEAD (Request information on resource, see section 4.3.2)
— POST (Transfers entity, see section 4.3.3)
*x Annotations, postings, forms, database extensions
— PUT (Creates new resource on server, see section 4.3.4)
— DELETE (Deletes resource from server, see section 4.3.5)
— CONNECT (Establish tunnel with proxy, see section 4.3.6)
— OPTIONS (Asks for server capabilities, see section 4.3.7)
— TRACE (Tracing of messages through proxies, see section 4.3.8)

3.6 Conditional GET

e GET under conditions

— Requires (case-insensitive) request header

* (Can be used by browser to check if cached version still fresh)
x Different types, e.g.: If-Modified-Since, If-Match, If-None-Match

e Example

— Request

* GET /chaosreader.html HTTP/1.1
Host: www.informationelle-selbstbestimmung-im-internet.de
If-None-Match: "2cd1-58e6c6898dce2"

— Response

* HTTP/1.1 304 Not Modified
Date: Wed, 08 Apr 2020 14:07:31 GMT
additional headers

Please revisit the response for an earlier HT'TP request. Note that the response contains
a Last-Modified date and an ETag. Both pieces can be used for conditional gets. While the
date is probably self-explanatory, the ETag is some version identifier provided by the server.
Changed page contents are reflected in changed ETag values (but not necessarily the other
way round).

On this slide, you see a conditional GET with the ETag value "2cd1-58e6c6898dce2" from
the previous response. As the server’s ETag value did not change, it responds with status
code 304, indicating that no modification took place. Hence, a cached result would still be
fresh and usable, saving bandwidth and reducing transmission delays.

https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7231#section-4.3.2
https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.5
https://tools.ietf.org/html/rfc7231#section-4.3.6
https://tools.ietf.org/html/rfc7231#section-4.3.7
https://tools.ietf.org/html/rfc7231#section-4.3.8
https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html#slide-http-caching

3.7 Sample Status Codes

e Three digits, first one for class of response

— Ixx: Informational - Request received, continuing process

* 100: Continue - Client may continue with request body

2xx: Successful - Request successfully received, understood, and ac-
cepted

* 200: OK
— 3xx: Redirection - Further action necessary to complete request
* 302: Found (temporarily under different URI)
* 303: See Other (redirect to different URI in Location header)
* 304: Not Modified (previous slide)
4xx: Client Error - Request with bad syntax or cannot be fulfilled
*x 403: Forbidden
* 404: Not Found

— 5xx: Server Error - Server failed for apparently valid request

3.8 Review Question

e Did you execute GET requests and conditional GET requests on the com-
mand line? Any surprises?

— Note that examples with www. informationelle-selbstbestimmung-im-internet.de
require GnuTLS (server redirects HT TP requests on port 80 to HTTPS
port 443).

4 Server State and Cookies

4.1 State Models
e Stateless: Server does not maintain client state

— Advantages

*x Simplified server design, reduced resource usage
* State changes on server do not require client notifications

* Recovery (restart after server crash) “simple”™ No client state to
restore

— E.g.: HTTP, DNS

x Server forgets client after request
* No session

e Stateful: Server maintains client state

— E.g., file server with table of pairs (Client, File) for caching

* Keep track which client has current version
x Performance improvement via locality

— Recovery requires to restore consistent state

Two major state models exist for servers in distributed systems, namely stateful and
stateless ones. Don’t worry if the idea of a stateless server seems surprising. Being stateless
means being simple, much simpler than what we usually use, but with some advantages shown
here.

On the negative side, if a stateless server receives the same request multiple times in short
sequence from the same client, it will happily provide the same, potentially long and costly
answer again and again. In contrast, a stateful server might save time and resources with a
brief reply: “Hey, my previous answer is still valid.”

‘While some stateless protocols, such as DNS, are used to provide stateless services, other
stateless protocols, such as HTTP, are used as building block for stateful applications. This
is what we see whenever we log in to some Web site, with some examples on the next slide.

How state can be tracked via the stateless HT'TP with session IDs, is addressed afterwards.

Also, you already saw that client-side state can be used to form conditional GET requests:
When the browser receives a reply, it remembers the resource’s ETag or modification date
and can use this information in subsequent conditional requests, which is the basis for HT'TP
caching later on.

Importantly, in all cases the HTTP server acts statelessly.

4.2 Stateful Web Applications
e HTTP is stateless

— Yet, Web applications often maintain client state
x E.g., personalized session after login
- Virtual shopping cart
- Shopping history, preferences
- Exercises in Learnweb
— Solution for stateful applications
*x Manage state of related requests as session outside HTTP
- Usually in database systems
* Server-side code
- (Not part of Web server, but of separately programmed ap-
plication)
- Gets executed for incoming HTTP requests

- Manages state and uses HTTP messages to transfer session
IDs (next slide)

4.3 Session IDs

e Session ID = Identifier to connect subsequent/related requests and re-
sponses

— Typical variant: Client-side storage of IDs in browser

* ID sent by server S, stored by browser (cookie or local storage)
*x Browser includes IDs set by S for every subsequent visit of S

- Think of automatic ID card (whose contents you do not un-
derstand)

- My browsers remove cookies and clear local storage upon exit

— Alternative: Server-side, session ID embedded in dynamically gener-
ated URIs

10

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

* May hinder caching
- URI does not identify resource any longer

4.3.1 Cookies (1/2)
e RFC 6265: HTTP State Management Mechanism

— Idea

x Client stores data sent by server
x Client sends this data with subsequent requests
- Without understanding that data at all

— Details

x Cookie is named byte string

% Server transfers cookie in Set-Cookie (2) header in response
- Set-Cookie: Version 0/Netscape and RFC 6265
- Set-Cookie2: Version 1, RFC 2965
- (Besides, JavaScript may create cookie at client)

x Client sends cookie in Cookie header in requests

4.3.2 Cookies (2/2)

e Note: Sometimes you may read that cookies are text files

— That is usually wrong, misleading, and irrelevant
— Modern browsers store cookies as rows in a relational database

* Storage in filesystem or database is an implementation detail
e Cookies have name, value, optional attributes/flags, e.g.:

— Expires, Max-Age
* Determine lifetime of cookie

x If both missing: “Session” cookie to be deleted when browser
exits

— Domain

* DNS domain of servers to which the cookie should be sent

5 Caching
5.1 HTTP Caching

e Caching reduces latency and server load for identical requests

11

https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc2965
https://en.wikipedia.org/wiki/HTTP_cookie#Cookie_attributes

Browser 1

Browser 2 [—

All identical requests are
going through to the server.

Shared cache Local (private) cache

T V\\ - (YY\ -

L - -) ' ™
Browser 1 f& — Browser 1 ::Cal::he ——
o er

B Browser 1)
/eb serv N feb serv
- \// »>
Cache
Browser 2 [~ T<')_/_/ ~— Browser 2 :' _{/z_ —
The first request is going through. The first request of each client is going through.
Subsequent identical requests are served Subsequent identical requests are nol even sent, but
by the shared cache served by the local cach
(mare efficient) (most efficient, except far first requests)

Figure 2: “HTTP cache types” by Mozilla Contributors under CC BY-SA 2.5;
from MDN web docs

e HTTP caching assumptions
— URI identifies resource, stability, client-independence
e Semantic transparency

— Caching is not visible to users

— Response from cache is equivalent to hypothetical one from server

The upper part of the figure shows a situation without caching, where identical requests
for the same resources need to be transmitted to the server again and again.

With caching, two major variants exist as shown in the lower part: On the right, each
browser has its own private cache (which is the case for usual browsers), which means that
identical requests from the same browser can now be answered from the cache. Clearly, this
reduces (a) latency as no network transmission is necessary and (b) server load. Even on
Web pages with dynamic contents, such caching is useful as lots of resources such as images,
scripts, and style information remain stable for longer periods of time.

The lower left shows a cache that is shared by multiple browsers. Usually, such caches are
implemented by so-called proxy servers, for example in company or university settings. Web
proxies intercept and inspect outgoing requests. They forward requests for unknown resources
to origin servers to obtain responses which they then store locally to deliver cached responses
for subsequent identical requests.

In any case, resources to be cached are identified by their URIs. For caching to be effective,
URIs and their resources should be stable for some time. For shared caches, URIs must be
client-independent, i.e., all clients must receive the same resource for the same URI.

As indicated on the next slide, servers may include expiration dates in their responses,
beyond which resources should not be cached. Also, conditional GET requests can be used to
validate whether cached results are still current.

5.2 HTTP Caching Mechanisms
e Expiration
— Server may indicate expiration date in Expires or Cache-Control

header

12

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching/contributors.txt
https://creativecommons.org/licenses/by-sa/2.5/
https://mdn.mozillademos.org/files/13777/HTTPCachtType.png
https://oer.gitlab.io/oer-courses/cacs/Distributed-Systems-Introduction.html#slide-caching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Expires
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

e Validation

— After expiration date, cache must check whether resource still usable
— May return new expiration date
* Conditional GET (“Slow hit”)

5.3 HTTP Caching Rules
e Complex rules, lots of details
— (Some details on Cache Control header)
e Server may limit caching
— no-store, no-cache, must-revalidate
e Client may

— enforce validation
* no-cache
— forbid caching

* no-store

6 Proxies

6.1 Web Proxies
e Web proxy server is intermediary between client and server

— Acts as server to client

x Proxy accepts request from client
- Then acts as client to server to obtain response
*x Proxy delivers response to client

— Acts as client to server

x Proxy sends request of real client to server
- Server just sees some client request
*x Proxy obtains response from server

6.2 Sample Proxy Applications
e Cache
e Firewall/Content filter/Ad blocker
e Anonymizer, e.g., Tor
— My privacy policy recommends surfing via Tor
e Debugging tool

— E.g., intercept and analyze app network data

13

https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html#slide-conditional-get
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://www.torproject.org/
https://oer.gitlab.io/privacy.html

6.3

7
7.1

7.2

Surrogate/Reverse proxy, Content Delivery Network (CDN)

— Replicated contents, inbound messages intercepted and redirected,
e.g.
* Load balancing
*x Geographical diversity (reduced latency, increased availability)

Review Questions

What is a stateless protocol? Given that HTTP is a stateless protocol,
how can lots of applications that apparently require state be implemented
on top of HTTP?

Where are HTTP caches typically located? What impact might HTTPS
have on caching?

E-Mail
E-Mail Basics

Among oldest Internet applications
Message format

— Based on RFC 822, 1982 (later taken up in HTTP)
— Extended with Multipurpose Internet Mail Extensions (MIME)

*x Content-Type (type of data contained in message)

* Content-Transfer-Encoding (how data in message body is en-
coded)

Plaintext messages

— E-mail is like postcard, written with erasable pencil
* Neither confidentiality nor integrity
— Learn self-defense, use GnuPG if you don’t like this
* SSL/TLS insufficient approach, recall end-to-end security

Message Transfer
Terminology
— Mail User Agent (MUA): Your mail reader
* E.g., browser, Thunderbird, Emacs

— Mail Transfer Agent (MTA): Mail server/daemon

*x E.g., sendmail, exim, postfix

14

https://oer.gitlab.io/oer-courses/cacs/Distributed-Systems-Introduction.html#slide-replication
https://tools.ietf.org/html/rfc822
https://en.wikipedia.org/wiki/Multipurpose_Internet_Mail_Extensions
https://oer.gitlab.io/OS/Operating-Systems-Security.html#slide-security-goals
https://oer.gitlab.io/OS/Operating-Systems-Security.html#slide-gnupg
https://oer.gitlab.io/oer-courses/cacs/Internet.html#slide-end-to-end-security

e Simple Mail Transfer Protocol, 1982 (SMTP, RFC 821—2821—5321)

Plaintext with HTTP, SMTP, IMAP;
protected with TLS, STARTTLS, De-Mail

Alice Bob

Alice’s Provider Bob's Provider

Plaintext at provider Plaintext at provider
Figure 3: Hop-to-hop security of e-mail

— Outgoing messages, MUA-to-MTA, MTA-to-MTA
* Plaintext (TCP/IP, port 25)

The figure visualizes hop-by-hop transmission of e-mail with SMTP. When sending an e-
mail, from an Internet point of view, your client (aka Mail User Agent) performs an end-to-end
SMTP exchange with some mail server (mail servers are also called Mail Transfer Agents). A
sample exchange is shown on the next slide. Usually, that server resides at the organization
that gave you your e-mail address; if it is not responsible for the recipient’s address, it performs
another end-to-end SMTP exchange with a suitable server.

Finally, the recipient picks up the e-mail in another end-to-end exchange. Note that
SMTP is only used to deliver e-mail to servers, not to users. So, the final exchange uses some
other protocol such as IMAP in mail clients or HT'TP in Web clients.

Nowadays, the exchanges between hops are usually encrypted, while the bulk of e-mail is
plaintext, which is available for inspection and modification at each participating server.

7.3 SMTP

telnet wi 25

Trying 128.176.159.139...

Connected to wi.uni-muenster.de.

Escape character is ’\"]’.

220 wi-vm700.wil.uni-muenster.de Microsoft ESMTP MAIL Service ready at Tue, 27 Oct 2009 11
HELO mouse.nix

250 wi-vm700.wil.uni-muenster.de Hello [128.176.159.107]

MAIL From: micky@mouse.nix

250 2.1.0 Sender 0K

RCPT To: lechten@wi.uni-muenster.de

250 2.1.5 Recipient 0K

DATA

354 Start mail input; end with <CRLF>.<CRLF>

Received: from mx1l.disney.com ([192.195.66.20]) by smtp.mouse.nix Super Duper SMTP Server;
To: 42Quniverse.com

From: micky@mouse.nuix

Subject: Don’t panic

Somebody Else’s Problem! (This is the message body after the empty

15

https://tools.ietf.org/html/rfc5321

line. Note that headers preceding the empty line have also been
entered manually. They are ignored by SMTP, but displayed to user.)

250 2.6.0 <bl3a2a36-fb6b-43ec-ad81-41ec44190e6a@wi-vm700.wil.uni-muenster.de> Queued mail

This is a real SMTP exchange via telnet, which demonstrates dramatic weaknesses in
protocol design. Without going into too many details, note the following:

1. MAIL From is an SMTP command to indicate who sent the e-mail. I was allowed to
enter any value, which was acknowledged to be OK.

2. RCPT To is an SMTP command to indicate who should receive the e-mail.

3. DATA is an SMTP command to say how the e-mail should look like. As stated earlier,
e-mails have got header lines which are separated by an empty line from the body.

As part of the data, I started with a fake “Received” header. Then, I entered fake “To”
and “From” headers. By accident, I made a typo in the “From” header.

7.4 SMTP MUA Header

Microsoft Mail Internet Headers Version 2.0

Received: from wi-vm700.wil.uni-muenster.de ([128.176.158.92]) by wi-vmail2005.wil.uni-mue
Received: from mouse.nix (128.176.159.107) by wi-vm700.wil.uni-muenster.de (128.176.159.13
Received: from mxl.disney.com ([192.195.66.20]) by smtp.mouse.nix Super Duper SMTP Server;
To: 42@universe.com

From: <micky@mouse.nuix>

Subject: Don’t panic

MIME-Version: 1.0

Content-Type: text/plain

Message-ID: <bl3a2a36-f56b-43ec-ad81-41ec44190e6awi-vm700.wil.uni-muenster.de>
Return-Path: micky@mouse.nix

Date: Tue, 27 Oct 2009 11:22:28 +0100

X-OriginalArrivalTime: 27 Oct 2009 10:22:35.0473 (UTC) FILETIME=[66C35410:01CA56EF]

Most mail clients allow to see e-mail headers. This is what was shown for the e-mail from
the previous slide.

Note that the recipient is not 42@universe.com. SMTP does not care about the e-mail
contents following the DATA command from the previous slide. The real recipient was shown
on the previous slide, but once the message is delivered, no visible trace of that is left for the
recipient.

Also note the “Received” headers. Some are real, one was typed on the previous slide.

Those must, have been happy times when people designed and implemented such protocols
without thinking of negative consequences.

7.5 Review Questions

e Who found the previous e-mail in his or her inbox?

e What parts of header data are trustworthy (to what degree)?

7.6 Concluding Questions

e What did you find difficult or confusing about the contents of the presen-
tation? Please be as specific as possible. For example, you could describe

16

your current understanding (which might allow us to identify misunder-
standings), ask questions in a Learnweb forum that allow us to help you,
or suggest improvements (maybe on GitLab). Most questions turn out
to be of general interest; please do not hesitate to ask and answer in the
forum. If you created additional original content that might help others
(e.g., a new exercise, an experiment, explanations concerning relationships
with different courses, ...), please share.

8 Conclusions

8.1 Summary
e Web browsers and servers talk HTTP

— Simple message format

Stateless request/response protocol

* State via cookies

Different connection types

Caching for performance

o E-Mail transferred via SMTP

8.2 OQutlook

e HTTP used for various applications

— Web services (e.g., SOAP messages)
— Ad-hoc request /reply protocols

e REST

— Representational State Transfer
— Software architecture for distributed hypermedia systems
x Generalization of Web
* Defining constraints
- Client/Server
- Stateless
- Cacheable

- Uniform interface, may use: URIs, MIME types, HTTP
methods

- Layered System
- (Code on demand)

Bibliography

[Hen09] Jim Hendler. “Web 3.0 Emerging”. In: Computer 42.1 (2009), pp. 111
113. por: 10.1109/MC.2009. 30.

17

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=67801
https://gitlab.com/oer/oer-courses/cacs/
https://en.wikipedia.org/wiki/SOAP
https://doi.org/10.1109/MC.2009.30

License Information

This document is part of an OER collection to teach basics of distributed sys-
tems. Source code and source files are available on GitLab under free licenses.

Except where otherwise noted, the work “Web and E-Mail”, (©) 2018-2023
Jens Lechtenborger, is published under the Creative Commons license CC BY-
SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are mot licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., “Creative Commons” itself) remain with their respective holders.

Note: This PDF document is an inferior version of an OER HTML page;
free/libre Org mode source repository.

18

https://gitlab.com/oer/oer-courses/cacs
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html
https://gitlab.com/oer/oer-courses/cacs

	Introduction
	Web
	HTTP
	Server State and Cookies
	Caching
	Proxies
	E-Mail
	Conclusions

