
The Internet

Jens Lechtenbörger

Summer Term 2023

Contents

1 Introduction 1

2 Basics 3

3 Layering and Protocols 5

4 Internet and OSI Models 8

5 Internet Communication 12

6 End-to-End Argument 16

7 Conclusions 22

1 Introduction

1.1 Today's Core Questions

� What is the Internet?

� How to provide global connectivity in view of heterogeneous network
technologies, diverse devices, and novel (and forthcoming) applications?

� How to cope with complexity?

1.2 Learning Objectives

� Explain and contrast Internet and OSI architectures

� Explain layers in Internet architecture

� Roles and interplay for communication

� Basic properties of IP, UDP, TCP

� Explain forwarding of Internet messages based on (IP and MAC) addresses
and demux keys

� Use Wireshark for basic network diagnosis

1



* What DNS server is in use? Does it reply? Do response messages
for TCP/IP arrive? What next-hop router is in use?

� Explain end-to-end argument

1.3 Previously on CACS . . .

1.3.1 Communication and Collaboration

� Communication frequently takes place via the Internet

� Telephony

� Instant messaging

� E-Mail

� Social networks

� Collaboration frequently supported by tools using Internet technologies

� All of the above means for communication

� ERP, CRM, e-learning systems

� File sharing: Sciebo, etherpad, etc.

� Programming (which subsumes �le sharing): Git, subversion, etc.

� All of the above are instances of DSs

1.3.2 Ubiquity of DSs Internet

� DSs are The Internet is everywhere

� Decentralized, heterogeneous, evolving

2



Figure 1: �Internet of Things� by Wilgengebroed on Flickr under CC BY 2.0;
from Wikimedia Commons

� Variety of applications

� Variety of physical networks and devices

* Cloud computing, browser as access device

� IT permeates our life

� Internet of Things (IoT)

� From smart devices to smart cities

� How does that really work?

� Complexity? Functionality?

� Security? Privacy?

2 Basics

2.1 (Computer) Networks

[PD11]: A network can be de�ned recursively as

3

https://www.flickr.com/photos/wilgengebroed/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:Internet_of_Things.jpg
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Internet_of_things


� two or more nodes/devices/hosts
connected by a link

� (e.g., copper, �ber, nothing)

Figure 2: Figure under CC0 1.0

� or two or more networks con-
nected by one or more nodes
(with necessary links)

� (e.g., gateway, router)

Figure 3: Figure under CC0 1.0
Networks can be de�ned recursively as shown here. An elementary network on the left

is an example of a so-called Local Area Network (LAN), although LAN is not a term with a
well-de�ned meaning. For example, your LAN at home (if you've got one) may intuitively be
understood as the network consisting of your household's locally connected devices and may
contain several links.

A network of networks as shown on the right is also called internetwork. The Internet
(spelled with a capital �I�) is a special internetwork.

2.1.1 On Routers

� Previous slide mentions routers as nodes that connect networks

� One example: router at home that connects home network to ISP's
network

� Other example: router that connects �large� networks at backbone
of Internet

* Independently managed networks are called autonomous systems

· E.g., networks of the University of Münster are part of an
autonomous system run by Deutsches Forschungsnetz

* Routers exchange information about reachable networks with
protocols such as BGP

· Usually, multiple paths between networks (and nodes) exist
(alternatives may allow to �route around� link and router
failures)

· Routers choose paths based on local policies (e.g., distance,
cost)

2.2 Internet vs Web

� The Internet is a network of networks

� Connectivity for heterogeneous devices

� Various protocols, some details on later slide

* IPv4 and IPv6 to send messages between devices on the Internet

4

https://gitlab.com/oer/figures/blob/master/DS/network-link.png
https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/blob/master/DS/network-nodes.png
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/Internet_service_provider
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://www.dfn.de/
https://en.wikipedia.org/wiki/Border_Gateway_Protocol
https://en.wikipedia.org/wiki/Internet


* TCP and UDP to send messages between processes on Internet
devices

· (E.g., process of Web browser talks with remote process of
Web server)

· TCP: Reliable full-duplex byte streams

· UDP: Unreliable message transfer

� The Web is an application using the Internet

� Clients and servers talking HTTP over TCP/IP

* E.g., GET requests asking for HTML pages (separate presenta-
tion)

* Web servers provide resources to Web clients (browsers, apps)

� Internet and Web are and contain DSs

2.3 Heterogeneity

� Internet is network of networks

� Potentially each network with

� independent administrative control

� di�erent applications and protocols

� di�erent performance and security requirements

� di�erent technologies (�ber, copper, wired, wireless)

� di�erent hardware and operating systems

� How to overcome heterogeneity?

3 Layering and Protocols

3.1 Layering

General technique in Software Engineering and Information Systems

� Use abstractions to hide complexity

� Abstractions naturally lead to layering

� Alternative abstractions at each layer

* Abstractions speci�ed by standards/protocols/APIs

� Thus, problem at hand is decomposed into manageable components

� Design becomes (more) modular

5

https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html
https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html
https://oer.gitlab.io/oer-courses/cacs/Distributed-Systems-Introduction.html


3.2 Network Models/Architectures

� Models frequently have di�erent layers of abstraction

� Goal of layering: Reduce complexity

* Each layer o�ers services to higher layers

· Semantics: What does the layer do?

* Layer interface de�nes how to access its services from higher
layers

· Parameters and results

· Implementation details are hidden

· (Think of class with interface describing method signatures
while code is hidden)

� Peer entities, located at same layer on di�erent machines, communicate
with each other

� Protocols describe rules and conventions of communication

* E.g., message formats, sequencing of events

� Network architecture = set of layers and protocols

(Based on: [Tan02])

3.3 Protocol Layers

� Each protocol instance talks virtually to its peer

Figure 4: �Layered Communication in OSI Model� by Runtux under Public
domain; from Wikimedia Commons

� E.g., HTTP GET request from Web browser to Web server

� Each layer communicates only by using the one below

6

https://commons.wikimedia.org/wiki/User:Runtux
https://en.wikipedia.org/wiki/Public_domain
https://en.wikipedia.org/wiki/Public_domain
https://commons.wikimedia.org/wiki/File:OSI-model-Communication.svg


� E.g., Web browser asks lower layer to transmit GET request to Web
server

� Lower layer service accessed by an interface

� At bottom, messages are carried by the medium

(Based on: [Tan02])

3.4 Famous Models/Architectures

� ISO OSI Reference Model

� Mostly a model, describes what each layer should do

* But no speci�cation of services and protocols (thus, no real ar-
chitecture)

� Predates real systems/networks

� TCP/IP Reference Model

� Originally, no clear distinction between services, interfaces, and pro-
tocols

* Instead, focus on protocols

� Model a la OSI as afterthought

(Based on: [Tan02])

7



4 Internet and OSI Models

4.1 OSI Reference Model
� International standard

� Seven layer model to con-
nect di�erent systems

* Media Layers

1. Sends bits as signals

2. Sends frames of in-
formation

3. Sends packets from
source host over
multiple links to
destination host

* Host layers

4. Provides end-to-end
delivery

5. Manages task dia-
logues

6. Converts di�erent
representations

7. Provides func-
tions needed by
users/applications

Figure 5: �OSI Model� by O�nfopt un-
der CC0 1.0; from Wikimedia Com-
mons

4.1.1 Drawing for OSI Model

Warning! External �gure not included: �Networking layers� © 2016 Julia
Evans, all rights reserved from julia's drawings. Displayed here with personal
permission.
(See HTML presentation instead.)

4.1.2 Where are Top and Bottom?

� In layered architectures, lower layers represent more technical details while
higher layers abstract away details

� E.g., in the OSI model the top layer (7) is the application layer, which
does not care about technical communication details

� The previous drawing does not follow that convention when showing layers,
but implicitly assumes it anyways (layer 3 �ignores layers 4 and above�)

4.2 OSI Model on Internet

� Internet architecture involves following subset of OSI layers

8

https://commons.wikimedia.org/wiki/User:Offnfopt
https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:OSI_Model_v1.svg
https://commons.wikimedia.org/wiki/File:OSI_Model_v1.svg
https://drawings.jvns.ca/layers/


Figure 6: Figure under CC0 1.0

� Application layer

* E.g., Web (HTTP), e-mail (SMTP), naming (DNS)

* (Presentation and session omitted; part of application protocols)

� Transport layer

* E.g., TCP, UDP (also QUIC to replace TLS over TCP)

� Network layer

* Unifying standard: Internet Protocol (IP; v4, v6)

* Everything over IP, IP over everything

� Data link layer

* E.g., Ethernet, WiFi, cellular phone network, satellite link

4.3 Internet Standards

� De�ned by Internet Engineering Task Force (IETF)

9

https://commons.wikimedia.org/wiki/File:OSI_Model_v1.svg
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/QUIC
https://www.ietf.org/


� Current list

� Each standard speci�ed by set of RFCs (Requests For Comments)

� But not every RFC is a standard, e.g., April fool's day

� Statuses: Informational, Experimental, Best Current Practice, Stan-
dards Track, Historic

� Community process

* Everyone may submit Internet Draft; typically, produced by
IETF working groups

* Afterwards peer reviewing; eventually, publication as RFC

* David Clark: �We reject kings, presidents and voting. We believe
in rough consensus and running code.�

4.3.1 Internet Architecture

� �Hourglass design�

Figure 7: Internet Architecture with narrow waist

� IP is focal point

� �Narrow waist�

� Application independent!

* Everything over IP

10

https://www.rfc-editor.org/standards
https://en.wikipedia.org/wiki/April_Fools'_Day_RFC
https://www.ietf.org/tao.html
https://www.ietf.org/tao.html


� Network independent!

* IP over everything

� No security

* �IP datagrams are like postcards, written with erasable pencils�

· Usual security protocol is TLS for encryption and integrity
protection, located between application and TCP

4.3.2 IP, UDP, and TCP

� IP (Internet protocol)

� O�ers best-e�ort host-to-host connectivity

* Best e�ort: Try once, no e�ort to recover from transmission
errors

* Connection-less delivery of datagrams

� Transport layer alternatives

� UDP (User Datagram Protocol)

* Extends IP towards best-e�ort application-to-application
connectivity

· Ports identify applications/processes (e.g., 53 for DNS)

· Connection-less

� TCP (Transmission Control Protocol)

* O�ers reliable application-to-application connectivity

· Ports identify applications/processes (e.g., 80/443 for Web
servers)

· Full-duplex byte stream

· Three-way handshake to establish connection

· Acknowledgements and timeouts for retransmissions

While this introduction does not aim to present individual protocols in detail, you should
be able to explain the following:

IP is an acronym for �Internet Protocol� (and not for IP address). Currently, two IP
versions are in use, namely IPv4 and IPv6. Every device that is connected to the Internet needs
to have at least one IP address. Actually, IP addresses are bound to networking hardware
of devices. For example, your smartphone's WiFi hardware might currently be con�gured
with one IP address, while its GSM/UTMS/LTE modem might be con�gured with a di�erent
IP address. Obviously, those IP addresses are recon�gured when your devices moves between
di�erent networks: Your WiFi network at home probably uses a di�erent range of IP addresses
than the one at the university.

Messages transmitted via IP are called datagrams, and each datagram carries a source and
a destination IP address. Ideally, a datagram sent from one host anywhere in the universe
reaches its destination host based on forwarding and routing functionality coming with the
Internet architecture.

IP is called best-e�ort protocol as participating devices give their best in one attempt to
deliver messages. However, they do not make attempts to recover from transmission errors.
You may �nd this interpretation of �best e�ort� surprising.

Also, note that IP works without a notion of connection, which means that individual
datagrams sent between two devices may travel on di�erent routes through the Internet.

Typically, multiple applications may run on each host. With modern OSs, those applica-
tions are managed as processes, and transport layer protocols such as UDP and TCP allow

11

https://oer.gitlab.io/oer-courses/cacs/Web-and-E-Mail.html#slide-manual-connections-tls
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol


those end points to communicate. Both, UDP and TCP, add source and destination ports

to IP, which are just integer numbers to be used by the OS to identify the processes as end
points of the communication. Brie�y, UDP is again a best-e�ort protocol. TCP adds func-
tionality for reliable connections of byte streams from and to which processes can read and
write arbitrary data. Such a connection is established by a so-called three-way handshake
(see SYN, SYN/ACK, and ACK in the subsequent drawing), and reliability is guaranteed
with retransmission mechanisms based on acknowledgements and timeouts.

4.3.3 Drawing on TCP

Warning! External �gure not included: �TCP basics!� © 2016 Julia Evans, all
rights reserved from julia's drawings. Displayed here with personal permission.
(See HTML presentation instead.)

5 Internet Communication

5.1 IP Stack Connections

Figure 8: �IP stack connections� by Jens Lechtenbörger under CC BY-SA 4.0;
based on work under CC BY-SA 3.0 by en:User:Kbrose and en:User:Cburnett
by changing arrow labels; from GitLab

12

https://drawings.jvns.ca/tcp-1/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://commons.wikimedia.org/wiki/File:IP_stack_connections.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/User:Kbrose
https://commons.wikimedia.org/wiki/User:Cburnett
https://gitlab.com/oer/figures/blob/master/DS/IP_stack_connections.svg


Consider communication between two applications on Internet hosts A and B. As shown at
the top, messages between A and B �ow through two routers, connecting di�erent underlying
networks. The use of di�erent protocol layers on hosts and routers is shown at the bottom.
Hosts and routers use the Internet layer to forward each datagram via next hops based on the
destination IP address. Transport and application layer information is only relevant at source
and target hosts but not at intermediate hops. Transport layer protocols such as UDP and
TCP provide end-to-end communication services for applications, while the application layer
accommodates protocols such as HTTP, SMTP, and DHCP, each of which relies on transport
layer protocol services for end-to-end communication.

5.1.1 Drawing on MAC Addresses

Warning! External �gure not included: �What's a MAC address?� © 2016
Julia Evans, all rights reserved from julia's drawings. Displayed here with per-
sonal permission.
(See HTML presentation instead.)

5.1.2 Drawing of Packet

Warning! External �gure not included: �Anatomy of a packet� © 2016 Julia
Evans, all rights reserved from julia's drawings. Displayed here with personal
permission.
(See HTML presentation instead.)

Again, this �gure does not show the order of layers. Instead, it shows the
order of bits and bytes in a message. The �rst bits encode MAC addresses as
part of LAN headers, while the �nal bits belong to the application message.
Verify that yourself with Wireshark.

5.1.3 Typical Communication Steps (0/2)

� Prerequisites

� Internet communication requires numeric IP addresses

* Lookup of IP addresses for human readable names via DNS

· DNS is request-reply protocol

· DNS client (e.g., the browser) asks DNS server for IP ad-
dress of name, e.g., query for www.wwu.de may result in
128.176.6.250

· (And more)

� LAN communication requires MAC addresses

* MAC (media access control) address: Hardware address of net-
work card, e.g., for Ethernet, WiFi

· Typical format with hexadecimal digits: 02:42:fa:5c:4a:4a

* Lookup of MAC addresses for IP addresses via ARP (Address
Resolution P.)

· Send ARP request into local network: �If you have IP ad-
dresses x, what is your MAC address?

· ARP request is a broadcast: Sent to every device in LAN

· Device that has IP address x replies with its MAC address

13

https://drawings.jvns.ca/mac-address/
https://drawings.jvns.ca/packet/
https://oer.gitlab.io/oer-courses/cacs/Wireshark-Demo.html


5.1.4 Typical Communication Steps (1/2)

� Ex.: Send HTTP message M to host www.wwu.de

1. Perform DNS lookup for www.wwu.de

� Returns IP address 128.176.6.250

2. Encapsulate M by adding TCP header

� Source and destination TCP ports: Numbers that identify pro-
cesses

* Typically, destination port 80 for Web servers with HTTP
(443 for HTTPS)

* Random source ports for Web browsers

3. Encapsulate TCP segment by adding IP header

� Source and destination IP addresses

� Demux key to indicate that TCP segment is contained

5.1.5 Typical Communication Steps (2/2)

� Ex.: Send HTTP message M to host www.wwu.de

1. Perform DNS lookup for www.wwu.de

2. Encapsulate with TCP header

3. Encapsulate with IP header

4. Routing decision to determine IP address of next hop router

� Returns IP address IP_R within sender's network

� E.g., 128.176.158.1 at my work, 192.168.178.1 at home

5. ARP lookup to determine MAC address for IP_R

� E.g., 0:0:c:7:ac:0

6. Encapsulate IP datagram with LAN-speci�c header with MAC ad-
dress, send via LAN to router

� Routers repeat steps (4) - (6) to forward M to �nal destination

14



5.2 Encapsulation

Figure 9: Sample encapsulation of GET request

You should be able to explain this �gure based on information of surrounding slides, roughly
as follows.

At the top, you see a client sending an HTTP GET request as application message M
to Web server S. The client does not care about any details of underlying layers beyond the
fact that TCP is used for transmission, and it asks its Operating System (OS, for short) to
transmit M to server S on port 80. The OS chooses an unassigned source port, here 42042,
and encapsulates M in a TCP header, forming a TCP segment, called T.

As shown on the previous slide, a DNS lookup for S may be necessary, resulting in an IP
address for S. Here, the IP addresses for browser and server are represented with IP_B and
IP_S, resp. The OS encapsulates TCP segment T in an IP header to form an IP datagram
D.

The OS is con�gured with IP addresses for a set of connected routers or uses protocols
such as DHCP to learn the IP address of at least one default router. It uses the target IP
address IP_S to perform a routing decision that determines the next hop router among its
known routers, here R1.

With an ARP request, the OS determines the MAC address for R1's known IP address
and builds a LAN header, say for WiFi transmission. Here, R1 denotes the MAC address
for R1 and B the one of the sending machine's WiFi networking card. The resulting WiFi
frame is broadcast into the neighborhood, where it may be seen by lots of devices. Receiving
network cards check the target MAC address against their own; some may take a closer look
even if the frame is not addressed to them, which is why it would have been a good idea to
encrypt M before sending it down the protocol stack. Anyways, R1 receives the frame as well,
traversing the �rst link.

As explained on the next slide, each header contains a demux key to indicate what type
of data is encapsulated. When receiving data, the demux key allows to determine what next
higher level should process the data. The demux key hex 800 in the WiFi header tells R1 that
an IP datagram is contained, so its unwraps the frame header to obtain IP datagram D and
sees that the datagram's IP target is IP_S, not itself. If R1 is curious or malicious, it may
still take a look at the contained message M, just as any other router along the way. Again,
encryption of M is necessary to prevent this.

Anyways, R1 performs a routing decision to bring datagram D closer to IP_S, identifying
R2 as next hop. It encapsulates D in another LAN header with its own source MAC address
and a target MAC address for R2 (potentially again using ARP) and injects the resulting
frame into the LAN shared with R2. Such router-to-router communication may be repeated

15

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol


several times before the �nal router injects a frame into the target LAN, where S receives it
and unwraps headers layer by layer until M reaches the Web server process.

I suggest to use the free software Wireshark to inspect DNS and ARP requests, frames,
headers, and messages of your devices, see my Wireshark demo.

5.3 Encapsulation and Demux Keys

� Encapsulation

� Protocol speci�c header added for each layer

* Starting from �pure� application message

* Headers prepended when moving down the protocol stack

� Headers �unwrapped� when moving up again

� Demux key

� Identi�es recipient protocol at next higher layer

� Di�erent protocols use di�erent forms of demux keys (see previous
slide)

* Ethernet header contains type �eld (IPv4 = 0x0800, ARP =
0x0806)

* IP header contains protocol �eld (TCP = 6, UDP = 17)

* TCP header contains port (application id) as demux key

5.4 Review Questions

5.5 Wireshark Demo

� Wireshark is a network protocol analyzer

� For live or recorded tra�c

� Wireshark Demo (including 8-minute video) to get you started

� Use of Wireshark improves understanding of networking and device com-
munication

6 End-to-End Argument

6.1 Network: Core, Edge, Endpoint

� Network core: Devices implementing the network

� Routers, switches

� Network edge: Devices using the network

� Computers, �smart� devices, IoT devices

� Endpoints of communication: Distributed applications

� Processes that send and receive messages

* E.g., your e-mail client, your Web browser, your messenger

16

https://www.wireshark.org/
https://oer.gitlab.io/oer-courses/cacs/Wireshark-Demo.html
https://www.wireshark.org/
./Wireshark-Demo.html


* Beware: Who is the other end for your browser? Who for your
mail client and messenger?

Here you see major terminology related to computer networks: The network core is im-
plemented by devices such routers, while it is used by endpoint applications on devices at the
network edge.

Note that answers to the questions on this slide are not obvious, but require knowledge
of the speci�c application protocol. For example, you will see in the upcoming session that
your Web browser talks directly with the Web server in an end-to-end fashion.

In contrast, your e-mails and messages do not directly reach the �nal recipient. Instead,
your client transfers the message (possibly encrypted) to some intermediary. Thus, from an
Internet perspective, the end-to-end communication here is between sender and intermedi-
ary. Note that the intermediary may potentially be the �rst in a sequence of intermediaries
forwarding your message. Ultimately, the recipient picks up the message from the �nal in-
termediary. Thus, the communication between sender and recipient is not end-to-end but
hop-by-hop.

6.2 Overarching Question

� What functionality to implement in the network core, what within com-
munication endpoints?

� Observations

* If functionality is available as Internet standard, every applica-
tion can immediately use it. No need to reinvent wheels.

* Simplicity and generality of protocols increase potential for re-
use, e.g., IP allows to connect �everything.�

� Answer to question given in [SRC84]: End-to-end argument

� Intuition

* Some functionality needs application knowledge

* Such functionality cannot be implemented inside the net

* In general, application functionality should not be implemented
in the net

6.3 End-to-End De�nition

� Quotes from [SRC84]

� �The principle, called the end-to-end argument, suggests that func-
tions placed at low levels of a system may be redundant or of little
value when compared with the cost of providing them at that low
level.�

� �The function in question can completely and correctly be imple-
mented only with the knowledge and help of the application standing
at the end points of the communication system. Therefore, provid-
ing that questioned function as a feature of the communication sys-
tem itself is not possible. (Sometimes an incomplete version of the
function provided by the communication system may be useful as a
performance enhancement.)�

17



The end-to-end argument deals with the question of �good� protocol design: Which func-
tions should one implement in a speci�c protocol at a speci�c layer of some architecture, which
ones in higher or lower layers?

Clearly, if functionality is provided by a low layer, say L0, all layers above L0 can just
use L0's functions, without any need for redundant implementations. Thus, having re-usable
functionality in low layers is a Good Thing. However, higher-level requirements may be too
speci�c to provide completely at L0. The next slide shows error-free �le transfer as an example
(end-to-end security goals are similar). Here, L0 might provide an incomplete version of the
required functionality. In this case, L0 gets more complex, and higher layers still need to
implement their own speci�c functions.

The end-to-end argument suggests (a) not to implement incomplete versions at L0 if they
are redundant given the need for more complete implementations at higher layers and (b) to
also consider cost of implementing incomplete functions at L0.

6.4 End-to-End Example

� Careful �le transfer

� Read �le from disk, transfer over Internet, write to disk at remote
end

� Possible errors, leading to corrupted data

* Disk error

* Software errors in �le system, �le transfer, network protocol,
bu�ering or copying

* Hardware errors (e.g., processor or memory failures)

* Network failures/attacks (messages lost or bits changed)

* Crash in the middle of the transfer

� Possible solutions

* Lots of �small� tests

* One end-to-end checksum check, with retry in case of errors

� How many �small� tests will be necessary?

� Notice: A test regarding network transfer does not help much since
all other types of errors can still corrupt data

* Hence, an end-to-end check will be necessary anyways

� However, from a performance perspective, a single end-to-end check
may be costly

* Consider transfer of some GB, which may take a long time

· The end-to-end check detects individual errors only after full
transfer

· In contrast, intermediate checks may identify individual bit
errors early, allowing partial retries

6.5 End-to-End Security

� Above observations also apply to security goals of con�dentiality and in-
tegrity

� Con�dentiality and integrity are end-to-end security goals

18

https://oer.gitlab.io/OS/Operating-Systems-Security.html#slide-security-goals
https://oer.gitlab.io/OS/Operating-Systems-Security.html#slide-security-goals
https://oer.gitlab.io/OS/Operating-Systems-Security.html#slide-end-to-end-security


� If you want them, you must neither rely on link level nor hop-by-hop
assurances

* As o�ered by, e.g., WPA variants, IPsec, VPN, De-Mail

� You must protect your data inside your applications (end-to-end)

� Recall e-mail and messaging mentioned above

First, I'd like to point out that not everybody understands what end-to-end security
means. For example, until 2020 Zoom advertised its videoconferencing service with the claim
of supporting end-to-end encryption, which was false and was one reason for an investor to
sue the company.

Absence of end-to-end encryption is no small issue. If you are not aware of the story of
Ladar Levison who shut down his company Lavabit for secure e-mail communication instead
of betraying his customers, I encourage you to read it. He gave this piece of advice: �This
experience has taught me one very important lesson: without congressional action or a strong
judicial precedent, I would strongly recommend against anyone trusting their private data to
a company with physical ties to the United States.�

You may want to think about the implications of his experience on your use of US-based
services, but that is not our topic here.

To illustrate the end-to-end argument in a security context, consider WiFi networking.
As you know, WiFi protocols are located at the lowest layer of the Internet architecture, and
the questions considered here are (a) whether WiFi encryption protocols such as WPA are
redundant and (b) whether it pays o� to implement encryption in wireless network protocols.

With WiFi protection, your data is encrypted between your device and the WiFi router.
Suppose your application sends out plaintext data, which is like a postcard written with an
erasable pencil: Everybody along the way is free to read and modify the data.

With WiFi encryption, that data is protected between you and your router, but forwarded
in its original plaintext from your router into the Internet, where it can again be read and
modi�ed by lots of parties (all ISPs along the way, everybody with control over any router
along the way, such as intelligence agencies and ordinary criminals). Clearly, if you care about
con�dentiality or integrity of your data, you do not transmit it as plaintext in the �rst place
but secure it with end-to-end cryptography, which applies not only in your own network but
along the entire way to the �nal destination. Then, however, WiFi encryption is redundant.

Also, security issues from WEP over WPA up to its most recent version 3 suggest that
the cost of providing those functions at such a low layer may be too high: If you depend on
those functions, you may need to replace your devices with each new standard.

Note however, that WPA is not only about encryption but also about access control. If
you connect �smart� (or dumb) devices in your home network, you may want to check whether
they and their services apply strong cryptography to prevent unauthorized access. If they do
(and you do not mind others sharing your bandwidth), access control functionality in WiFi
networking is of little value.

In view of the end-to-end argument, WiFi protection seems to be a good candidate for
elimination. I happily use open WiFi networks on the road, and I run a Freifunk router at
home to support the vision of open WiFi networking as commodity.

19

https://en.wikipedia.org/wiki/Wi-Fi_Protected_Access
https://www.computerworld.com/article/3537193/zoom-hit-by-investor-lawsuit-as-security-privacy-concerns-mount.html
https://www.computerworld.com/article/3537193/zoom-hit-by-investor-lawsuit-as-security-privacy-concerns-mount.html
https://www.theguardian.com/commentisfree/2014/may/20/why-did-lavabit-shut-down-snowden-email
https://www.theguardian.com/commentisfree/2014/may/20/why-did-lavabit-shut-down-snowden-email
https://www.theguardian.com/technology/2013/aug/08/lavabit-email-shut-down-edward-snowden
https://www.theguardian.com/technology/2013/aug/08/lavabit-email-shut-down-edward-snowden
https://www.theguardian.com/technology/2013/aug/08/lavabit-email-shut-down-edward-snowden
https://www.theguardian.com/technology/2013/aug/08/lavabit-email-shut-down-edward-snowden
https://en.wikipedia.org/w/index.php?title=Wi-Fi_Protected_Access&oldid=946387526#Security_issues
https://freifunk.net/


6.5.1 Hybrid End-to-End Encryption

 
3

IN9 Ta

Vegf 0 5 0
9 Tl

5 SIE so S
D I943

E IIv 50mir
pI E A

G 5s E
G s

f N
s s G 5o

s a
g f
in O
5 EE d

05 s S
Is es
e 39

U 1
T 55 5

nur 0 S
E O

E
0

MH9
1

Figure 10: �End-to-End Encryption (Hybrid)� by Noah Lücke, Moritz van den
Berg, Anton Levkau, Nick Vrban and Jannes Werk under CC BY-SA 4.0; con-
verted from GitLab

This �gure was created by students in the context of the course Communication and Collabo-
ration Systems (CACS) in 2020, although details for its understanding are not part of CACS
but can be found elsewhere.

To understand the �gure, you need to know the following:

� Encryption transforms a bit string, e.g., a message M, into another bit string that
looks like random data, i.e., the encrypted data does not reveal any information about
the original data M. Thus, encryption protects the security goal of con�dentiality
where M should not be accessible to third parties. Some form of keys (which are other
bit strings) are necessary to encrypt M and to decrypt the encrypted data to obtain M
again.

20

https://creativecommons.org/licenses/by-sa/4.0/
https://gitlab.com/oer/figures/blob/master/Internet/Hybrid-End-to-End-Encryption.pdf
https://oer.gitlab.io/OS/Operating-Systems-Security.html#slide-symmetric-encryption


� Symmetric encryption requires the use of a secret key that is shared by the commu-
nicating parties, here Alice and Bob; a symmetric key used for encryption is then also
required for decryption.

� Asymmetric encryption relies on key pairs, consisting of public key and private key,
where the public key is published and can be used to send encrypted messages to its
owner who needs the private key for decryption.

� Hybrid encryption relies on asymmetric setup phases to exchange shared symmetric
keys which are then used for ordinary messages. There are several reasons to use
hybrid protocols, in particular performance (symmetric operations are much faster
than asymmetric ones) and security (e.g., asymmetric operations for proofs of identity
and �secure� derivation of symmetric keys).

In the simplistic and non-realistic protocol shown here, Alice obtains Bob's public key
and uses this to send him a new symmetric key, encrypted with his public key, which he can
then obtain with his private key. Afterwards, Alice and Bob share a symmetric key to protect
their communication.

6.6 Then vs Now

� [BC01]: Rethinking the Design of the Internet

� Challenges since 1980s

* Untrustworthy world, e.g., attacks, spam, DDoS

· Need more mechanism in the core to enforce �good� behav-
ior?

* More demanding applications, e.g., video streaming

· Best e�ort model may not be good enough, need intermediate
storage sites for streaming?

* ISP service di�erentiation

· Di�erent pieces of content provided with di�erent QoS guar-
antees?

* Rise of third-party involvement

· O�cials of organizations or governments interpose themselves

* Less sophisticated users

· From initial experts to Joe Sixpack, who may be overwhelmed
by complexity in endpoints

� RFC 3724, 2004: End-to-end is still relevant, though

* End-to-end manages state at the edges, not the core

· Failures in core do not a�ect application state

* Protection of innovation, reliability, trust

6.7 Review Questions

� Think of your favorite messenger application. Do you know how messages
are transferred? Is communication hop-by-hop or end-to-end? Does it
implement end-to-end security (details are not important for your response
here�maybe provide a pointer to veri�able source)? Does security of
communication bene�t from WPA?

21

https://tools.ietf.org/html/rfc3724


6.8 Concluding Questions

� What did you �nd di�cult or confusing about the contents of the presen-
tation? Please be as speci�c as possible. For example, you could describe
your current understanding (which might allow us to identify misunder-
standings), ask questions in a Learnweb forum that allow us to help you,
or suggest improvements (maybe on GitLab). Most questions turn out
to be of general interest; please do not hesitate to ask and answer in the
forum. If you created additional original content that might help others
(e.g., a new exercise, an experiment, explanations concerning relationships
with di�erent courses, . . . ), please share.

7 Conclusions

7.1 Summary

� Computer networks are general purpose networks

� The Internet forms the backbone for modern communication and
collaboration

� Complexity reduced via layered architecture

� Modular design

� Internet vs OSI architecture

� Encapsulation and demux keys

Bibliography

[BC01] Marjory S. Blumenthal and David D. Clark. �Communications Policy
in Transition�. In: 2001. Chap. Rethinking the Design of the Internet:
The End-to-end Arguments vs. The Brave New World, pp. 91�139.
url: https://dl.acm.org/citation.cfm?id=566696.566700.

[PD11] Larry L. Peterson and Bruce S. Davie. Computer Networks, Fifth

Edition: A Systems Approach. 5th. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 2011. url: https : / / booksite .

elsevier.com/9780123850591/.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark. �End-to-end Arguments in
System Design�. In: ACM Trans. Comput. Syst. 2.4 (1984), pp. 277�
288. url: http://web.mit.edu/Saltzer/www/publications/
endtoend/endtoend.pdf.

[Tan02] Andrew S. Tanenbaum. Computer Networks. 4th. Prentice-Hall, Inc.,
2002. url: https://www.pearson.com/us/higher- education/
product/Tanenbaum-Computer-Networks-4th-Edition/9780130661029.

html.

22

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=67801
https://gitlab.com/oer/oer-courses/cacs/
https://dl.acm.org/citation.cfm?id=566696.566700
https://booksite.elsevier.com/9780123850591/
https://booksite.elsevier.com/9780123850591/
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf
https://www.pearson.com/us/higher-education/product/Tanenbaum-Computer-Networks-4th-Edition/9780130661029.html
https://www.pearson.com/us/higher-education/product/Tanenbaum-Computer-Networks-4th-Edition/9780130661029.html
https://www.pearson.com/us/higher-education/product/Tanenbaum-Computer-Networks-4th-Edition/9780130661029.html


License Information

This document is part of an OER collection to teach basics of distributed sys-
tems. Source code and source �les are available on GitLab under free licenses.

Except where otherwise noted, the work �The Internet�, © 2018-2023 Jens
Lechtenbörger, is published under the Creative Commons license CC BY-SA
4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., �Creative Commons� itself) remain with their respective holders.

Note: This PDF document is an inferior version of an OER HTML page;
free/libre Org mode source repository.

23

https://gitlab.com/oer/oer-courses/cacs
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://oer.gitlab.io/oer-courses/cacs/Internet.html
https://gitlab.com/oer/oer-courses/cacs

	Introduction
	Basics
	Layering and Protocols
	Internet and OSI Models
	Internet Communication
	End-to-End Argument
	Conclusions

