
Git Introduction

Jens Lechtenbörger

Summer Term 2023

Contents

1 Introduction

1.1 Learning Objectives

� Discuss bene�ts and challenges of version control systems (e.g., in the con-
text of university study) and contrast decentralized ones with centralized
ones

� Explain states of �les under Git and apply commands to manage them

� Explain Feature Branch Work�ow and apply it in sample scenarios

� Edit simple Markdown documents

Learning objectives specify what you should be able to do after having worked through a
presentation. Thus, they o�er guidance for your learning.

Each learning objective consists of two major components, namely an action verb and
a topic. Action verbs specify what actions you should be able to perform concerning the
topic, and they indicate the target level of skill (in Bloom's Taxonomy or its revised version
as sketched under the hyperlink above).

You may want to think of learning objectives as sample exam tasks.

1.2 Core Questions

� How to collaborate on shared documents as distributed team?

1

https://en.wikipedia.org/wiki/Decentralization
https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/

Figure 1: �Magit screenshot� under CC0 1.0; from GitLab

� Consider multiple people working on multiple �les

* Potentially in parallel on the same �le

* Think of group exercise sheet, project documentation, source
code

� How to keep track of who changed what why?

� How to support uni�ed/integrated end result?

1.3 Your Experiences?

� Brie�y write down your own experiences.

� Did you collaborate on documents

* by sending them via e-mail,

* by using shared (cloud) storage (e.g., Sciebo with OnlyO�ce,
Google),

* by using collaborative editors (e.g., Sciebo with OnlyO�ce, Ether-
pad, HedgeDoc, Overleaf)

* by using version control systems (e.g., Git, SVN),

* by using other means?

� Why did you choose what alternative? What challenges arose? Do
you bother to read Terms of Service when you entrust �your� docu-
ments and thoughts (each individual keystroke, including �deleted�
parts) to third parties (e.g., in the cloud)?

2

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/blob/master/screenshots/magit.png
https://hochschulcloud.nrw/en/hilfe/webinterface/simultan.html
https://hochschulcloud.nrw/en/hilfe/webinterface/simultan.html
https://pad.riseup.net/
https://pad.riseup.net/
https://pad.uni-muenster.de/

1.4 Version Control Systems (VCSs)

� Synonyms: Version/source code/revision control system, source code man-
agement (VCS, SCM)

� Collaboration on repository of documents

� Each document going through various versions/revisions

* Each document improved by various authors

· April 2012, Linux kernel 3.2: 1,316 developers from 226 com-
panies

1.4.1 Major VCS features

� VCS keeps track of history

� Who changed what why when?

Figure 2: �Meeting arrows� under CC0 1.0; rotated from Pixabay

� Restore/inspect old versions if necessary

� VCS supports merging of versions into uni�ed/integrated version

� Integrate intermediate versions of single �le with changes by multiple
authors

� Copying of �les is obsolete with VCSs

� Do not create copies of �les with names such as Git-Intro-Final-1.1.txt
or Git-Intro-Final-reviewed-Alice.txt

* Instead, use VCS mechanism, e.g., use tags with Git

2 Git Concepts

2.1 Git: A Decentralized VCS

� Various VCSs exist

3

https://www.linux.com/training-tutorials/counting-contributions-who-wrote-linux-32/
https://www.linux.com/training-tutorials/counting-contributions-who-wrote-linux-32/
https://creativecommons.org/publicdomain/zero/1.0/
https://pixabay.com/en/arrows-center-inside-middle-2033963/
https://git-scm.com/book/en/v2/Git-Basics-Tagging

� E.g.: Git, BitKeeper, SVN, CVS

* (Color code: decentralized, centralized)

� Git created by Linus Torvalds for the development of the kernel Linux

� Reference: Pro Git book

Figure 3: �Git Logo� by Jason Long under CC BY 3.0; from git-scm.com

� Git as example of decentralized VCS

* Every author has own copy of all documents and their history

* Supports o�ine work without server connectivity

· Of course, collaboration requires network connectivity

* Distributed trust/control/visibility/surveillance

2.2 Key Terms: Fork, Commit, Push, Pull

� Fork/clone repository: Create copy of repository

Figure 4: �Folder� under CC0 1.0; derived from Pixabay

� Clone: Create copy of remote repository on your machine

� Fork: Create copy within online Git platform; then clone that

� Commit (aka check-in)

Figure 5: �Folder� under CC0 1.0; derived from Pixabay

4

https://www.kernel.org/
https://git-scm.com/book/en/v2
https://twitter.com/jasonlong
https://creativecommons.org/licenses/by/3.0/
https://git-scm.com/images/logos/downloads/Git-Logo-2Color.png
https://en.wikipedia.org/wiki/Decentralization
https://creativecommons.org/publicdomain/zero/1.0/
https://pixabay.com/en/folder-files-paper-office-document-303891/
https://creativecommons.org/publicdomain/zero/1.0/
https://pixabay.com/en/folder-files-paper-office-document-303891/

� Make (some or all) changes permanent; announce them to version
control system

� Push: Publish (some or all) commits to remote repository

* Requires authorization

� Fetch (pull): Retrieve commits from remote repository (also merge
them)

Some Git repositories are public, which means that everyone is allowed to read and copy
their contents. For example, this is the case for free software projects and open educational
resources. Obviously, owners of projects want to keep control over their repositories, so they
do not allow random people to change �les.

The Git command line operation to copy a repository to your local machine is called git

clone. This operation downloads all �les and the history of some project, e.g.: git clone

https://gitlab.com/oer/cs/programming.git

As you own the cloned repository on your local machine, you can change everything to
your liking. With git commit, you record changes as permanent, to be remembered by the
version control system. E.g., this commit shows a simple improvement of wording while that
one introduces larger changes of slides.

To publish local commits to a repository, use git push. However, if you just cloned
someone else's source project, you will not be allowed to integrate your commits into the
source project. Thus, git push would fail. In contrast, you can push to your own repositories
(and those where you were granted appropriate permissions).

On Web based Git platforms such as GitLab, you can create your own fresh projects, to
which you are allowed to push commits.

To contribute to someone else's project, such platforms provide a so-called fork operation,
creating a full copy of the source, which is also called upstream. You can clone your fork to
your own machine and apply commits. This time, however, you own the repository from
which you cloned and you are allowed to push commits to that repository.

Also, as we will see later on, such platforms provide so-called merge requests (or pull
requests), with which you can propose commits on your forked project to be integrated into
the upstream project.

Also, if you clone some repository you receive all commits up to that point in time. Over
time, more commits may be applied to the repository, and Git o�ers fetch and pull operations
to retrieve those.

2.3 Key Terms: Branch, Merge

� Branches

5

https://gitlab.com/oer/cs/programming/-/commit/791ef5c4e32ba1283d5c4739bf20c2d94a3e1110
https://gitlab.com/oer/cs/programming/-/commit/6df5fc807b0f9bacb0f9aa44674f65556c3e7fbb
https://gitlab.com/oer/cs/programming/-/commit/6df5fc807b0f9bacb0f9aa44674f65556c3e7fbb

Figure 6: �Git Branches� by Atlassian under CC BY 2.5 Australia; dimension
attributes added, from Atlassian

� Alternative versions of documents, on which to commit

* Without being disturbed by changes of others

* Without disturbing others

· You can share your branches if you like, though

� Merge

� Combine changes of one branch into another branch

* May or may not need to resolve con�icts

� (Don't worry if this seems abstract, we'll try this out.)

With VCSs, di�erent independent developments can happen at the same time in a single
project. For example, while one team member adds some feature to the UI, a second one
might �x a bug, and a third one might improve the backend. To isolate those changes from
each other, they can take place in so-called branches, where the default branch is called master

(or main) and represents a stable version. Later on, the commits of other, ��nished� branches
can be merged into the master branch.

Note that here we see four branches, the master branch in blue, one for ongoing develop-
ment in purple and two feature branches in green. The feature branches were created from
di�erent states of the development branch: the �rst one, let's call it f1, contains the changes
of one purple commit; the second one, say f2, contains two purple commits. Note that f2 in-
troduces two commits while the purple branch independently advances with another commit,
before f2 is merged into the purple branch with a so-called merge commit. At this point in
time, the changes of all commits of f2 are integrated into the purple branch, and f2 itself is
no longer particularly interesting.

For some point in the future, we should expect f1 to be merged into the purple branch
and the purple branch to be merged into master.

2.4 Git explained by Linus Torvalds

� Video at archive.org (Tech Talk, 2007, by Google Talks under CC BY-
NC-SA 3.0)

� Total length of 84 minutes, suggested viewing: 7:40 to 29:00

6

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://creativecommons.org/licenses/by/2.5/au/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://opensource.com/article/20/4/git-merge-conflict
https://archive.org/details/LinusTorvaldsOnGittechTalk
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

2.4.1 Review Questions

Prepare answers to the following questions

� What is the role of a VCS (or SCM, in Torvalds' terminology)?

� What di�erences exist between decentralized and centralized VCSs?

� By the way, Torvalds distinguishes centralized from distributed SCMs.
I prefer �decentralized� over �distributed�. You?

3 Git Basics

3.1 In-Browser Tutorial

� Some students recommended this tutorial to try out Git commands in
browser: https://learngitbranching.js.org/

� Several levels of the tutorial cover Git commands that appear on later
slides

* Tab �Main�, Level �1: Introduction to Git Commits� introduces
commit, branch, merge, rebase

* Tab �Remote�, Level �1: Clone Intro� introduces clone, fetch,
pull, push

3.2 Getting Started

� Quickstart for Git installation and setup for GitLab

� (Actually, you can only follow sections 4 and 5 after Git accounts
have been set up)

� At least, install Git and perform �rst-time setup

� You may use Git without a server

� Run git init in any directory

* Keep track of your own �les

� By default, you work on a branch called main or master

* That branch is not more special than any other branch you may
create

* (The term �master� is o�ensive; migration to �main� is under way
in lots of places)

3.3 Accessing Remote Repositories

� Download �les from public repository: clone

� git clone https://gitlab.com/oer/cs/programming.git

* Change into that directory: cd programming

· Try out Git commands (but not git push, which you are
not allowed here)

7

https://learngitbranching.js.org/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://sfconservancy.org/news/2020/jun/23/gitbranchname/

* Later on, git pull merges changes to bring your copy up to
date

� Contribute to remote repository

� Push commits as explained earlier and revisited later on

3.3.1 A quick check

3.4 First Steps with Git

� Prerequisites

� You installed Git

� You performed the First-time Git setup

� Part 0

� Create repository or clone one

* git clone https://gitlab.com/oer/cs/programming.git

* Creates directory programming

· Change into that directory

· Note presence of �real� contents and of sub-directory .git

(with Git meta-data)

3.4.1 Part 1: Inspecting Status

� Execute git status

� Output includes current branch and potential changes

� Open some �le in text editor and improve it

� E.g., add something to Git-Introduction.org

� Create a new �le, say, test.txt

� Execute git status again

� Output indicates

* Git-Introduction.org as not staged and modi�ed

* test.txt as untracked

* Also, follow-up commands are suggested

· git add to stage for commit

· git checkout to discard changes

8

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup

3.4.2 Part 2: Staging Changes

� Changes need to be staged before commit

� git add is used for that purpose

� Execute git add Git-Introduction.org

� Execute git status

* Output indicates Git-Introduction.org as to be committed
and modi�ed

� Modify Git-Introduction.org more

� Execute git status

� Output indicates Git-Introduction.org as

* To be committed and modi�ed

· Those are your changes added in Part 1

* As well as not staged and modi�ed

· Those are your changes of Part 2

3.4.3 Part 3: Viewing Di�erences

� Execute git diff

� Output shows changes that are not yet staged

* Your changes of Part 2

� Execute git diff --cached

� Output shows di�erence between staged changes and last committed
version

� Execute git add Git-Introduction.org

� Execute both diff variants again

� Lots of other variants exits

* Execute git help diff

* Similarly, help for other git commands is available

3.4.4 Part 4: Committing Changes

� Commit (to be committed) changes

� Execute git commit -m "<what was improved>"

* Where <what was improved> should be meaningful text

* 50 characters or less

� Execute git status

� Output no longer mentions Git-Introduction.org

* Up to date from Git's perspective

9

https://chris.beams.io/posts/git-commit/

� Output indicates that your branch advanced; git push suggested for
follow-up

� Execute git log (press h for help, q to quit)

� Output indicates commit history

� Note your commit at top

3.4.5 Part 5: Undoing Changes

� Undo premature commit that only exists locally

� Execute git reset HEAD~

* (Don't do this for commits that exist in remote places)

� Execute git status and git log

* Note that state before commit is restored

* May apply more changes, commit later

� Undo git add with git reset

� Execute git add Git-Introduction.org

� Execute git reset Git-Introduction.org

� Restore committed version

� Execute git checkout -- <file>

� Warning: Local changes are lost

3.4.6 Part 6: Stashing Changes

� Save intermediate changes without commit

� Execute git stash

* If you performed git checkout ... on previous slide, change
some �le �rst

� Execute git status and �nd yourself on previous commit

� Apply saved changes

� Possibly on di�erent branch or after git pull

� Execute git stash apply

* May lead to con�icts, to be resolved manually

10

3.4.7 Part 7: Branching

� Work on di�erent branch

� E.g., introduce new feature, �x bug, solve task

� Execute git checkout -b testbranch

* Option -b: Create new branch and switch to it

· (Leave out for switch to existing branch)

� Execute git status and �nd yourself on new branch

* With uncommitted modi�cations from main (or master)

* Change more, commit on branch

* Later on, merge or rebase with main

� Execute git checkout main and git checkout testbranch to switch
branches

* (Newer versions of git know git switch for the same purpose)

3.4.8 Remotes (1)

� Show remote repositories, whose changes you track:

� git remote -v

* By default, remote after git clone is called origin

* No remote exists after git init

* For a forked project, one usually adds an upstream remote (see
next two slides)

� Contribute to project, two variants

1. Operation push (requires permission)

� You can push to your own projects

� E.g., push new branch to remote origin:

* git push -u origin testbranch

2. Use merge/pull requests for other projects (next slide)

3.4.9 Remotes (2)

� Contribute to some project, the upstream (section in Pro Git)

� Projects follow di�erent work�ows; read project's contribution in-
structions �rst

� E.g., (Forking) Feature Branch Work�ow

* Fork upstream project (in GUI)

· Which creates your own project with full permissions

* Clone it

* Create separate branch for each independent contribution

· E.g., bug �x, new feature, improved documentation

· Commit, push branch (to fork)

11

https://git-scm.com/docs/git-switch
https://www.atlassian.com/git/tutorials/git-forks-and-upstreams
https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project

* In GUI, openmerge request (GitLab) or pull request (GitHub)
for branch

· If accepted, its changes are merged into upstream project

Di�erent projects follow di�erent work�ows regarding their use of branches. Unfortu-
nately, terminology concerning such work�ows is not uni�ed, and several alternatives exist.

This slide focuses on a speci�c feature branch work�ow to contribute to someone else's
project, say, one which we found on GitLab.com. That project is the �upstream project�, or
�upstream� for short.

Suppose we aim to contribute an upstream feature, which may add some functionality or
�x a bug. As we do not have any permissions on upstream, we �rst fork the upstream project,
i.e., we create our own copy of the project, also called �a fork�, with which we are allowed
to do whatever we want (from Git's perspective at least; license information speci�es what
we are allowed to do from a legal perspective�clearly, free/libre and open source licenses are
necessary for collaboration and sustainability).

Then, we clone this fork to our local machine.
Locally, we create a new branch for our feature, which is why the work�ow is called

�feature branch work�ow�. Then, we develop the feature, involving at least one commit on
the feature branch, before we �nally push the completed feature branch to our own fork. (To
avoid merge con�icts, it is good practice to rebase the feature branch on the most recent state
of upstream�see also the next slide for a rebase operation in a di�erent context.)

Finally, we create a merge request in the upstream project, asking that some maintainer
merges our feature into their code.

Besides, concerning terminology, note that an initial fork is largely orthogonal to the
use of feature branches: If you are permitted to push new branches to a project, forking is
not necessary, and the resulting work�ow may be called feature branch work�ow, while the
work�ow including the fork operation as outlined on this slide is also called forking work�ow
or GitHub �ow elsewhere.

3.4.10 Remotes (3)

� When merge request was accepted upstream, maybe update your fork to
mirror upstream's state

� Goal: Update your master branch based on upstream's master branch

� Approach

* Set up source project as remote upstream:

· git remote add upstream <HTTPS-URL of source project>

* Fetch upstream: git fetch upstream

* Integrate upstream/master into your master, maybe with re-
base:

· git checkout master

· git rebase upstream/master

* Push updated master to your fork: git push

A point that might be confusing at �rst is the following one: We talk about di�erent

master (and other) branches. When you fork a project, the source project and your fork both
contain a master branch, and while those branches contain the same commits initially, they
may diverge over time: You may apply commits to your master, while the source project also
evolves. Thus, those two branches are really di�erent things. As you see on the previous and
this slide, we can use names such as origin and upstream to name di�erent remote repositories,
which allows us to distinguish di�erent versions of branches such as origin/master from
upstream/master.

In addition, when you clone a repository, you create a master branch on your local ma-
chine, which again is di�erent from the one in the remote repository. You may change that
local master branch, while others might change master in the remote repository. Thus, those
two branches are di�erent things, and we use push and fetch or pull to synchronize them.

12

https://www.atlassian.com/git/tutorials/comparing-workflows
https://oer.gitlab.io/OS/Operating-Systems-Motivation.html#slide-free-software
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project

It is important to note that commits on a single branch are ordered linearly. Thus, suppose
that you clone a remote repository, where the latest commit on master is C0. You then add
commit C1 to your local master branch (after C0), and someone else concurrently adds C2
to the remote master (after C0). In this situation, attempts to push the local master branch
would fail (because the two commits C1 and C2 both have the same parent commit C0 and
are not ordered with respect to each other). In this situation, one needs to merge or to rebase

to integrate both master branches (which you will explore in the exercises).
Work�ows based on branches (as mentioned on the previous slide) help to gain control

over such situations.

3.4.11 Review Questions

� As part of First Steps with Git, git status inspects repository, in par-
ticular �le states

� Recall that �les may be untracked, if they are located inside a Git
repository but not managed by Git

� Other �les may be called tracked

� Prepare answers to the following questions

� Among the tracked �les, which states can you identify from the
demo? Which commands are presented to perform what state tran-
sitions?

� Optional: Draw a diagram to visualize your �ndings

3.5 Merge vs Rebase

� Commands merge and rebase both unify two branches

� Illustrated subsequently

� Same uni�ed �le contents in the end, but di�erent views of history

3.5.1 Merge vs Rebase (1)

� Suppose you created branch for new feature and committed on that
branch; in the meantime, somebody else committed to master

13

Figure 7: �A forked commit history� by Atlassian under CC BY 2.5 Australia;
from Atlassian

3.5.2 Merge vs Rebase (2)

� Merge creates new commit to combine both branches

� Including all commits

� Keeping parallel history

Figure 8: �Merging� by Atlassian under CC BY 2.5 Australia; from Atlassian

3.5.3 Merge vs Rebase (3)

� Rebase rewrites feature branch on master

14

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://creativecommons.org/licenses/by/2.5/au/
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://creativecommons.org/licenses/by/2.5/au/
https://www.atlassian.com/git/tutorials/merging-vs-rebasing

� Applies local commits of feature on master

� Cleaner end result, but branch's history lost/changed

* Only do this for local commits (i.e., before you pushed feature)

· Rebase changes history, so use merge for remote branches

Figure 9: �Rebasing� by Atlassian under CC BY 2.5 Australia; from Atlassian

3.6 Sample Commands

git clone <project-URI>

Then, later on retrieve latest changes:

git fetch origin

See what to do, maybe pull when suggested in status output:

git status

git pull

Create new branch for your work and switch to it:

git checkout -b nameForBranch

Modify/add files, commit (potentially often):

git add newFile

git commit -m "Describe change"

Push branch:

git push -u origin nameForBranch

Ultimately, merge or rebase branch nameForBranch into branch master

git checkout master

git merge nameForBranch

If conflict, resolve as instructed by git, commit. Finally push:

git push

15

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://creativecommons.org/licenses/by/2.5/au/
https://www.atlassian.com/git/tutorials/merging-vs-rebasing

4 GitLab

4.1 GitLab Overview

� Web platform for Git repositories

� https://about.gitlab.com/

� Free software, which you could run on your own server

� Manage Git repositories

� Web GUI for forks, commits, pull requests, issues, and much more

� Noti�cations for lots of events

* Not enabled by default

� So-called Continuous Integration (CI) runners to be executed upon
commit

* Based on Docker images

* Build and test your project (build executables, test them, deploy
them, generate documentation, presentations, etc.)

4.2 GitLab in Action

� Exercise (during session)

5 Aside: Lightweight Markup Languages

5.1 Lightweight Markup

� Markup: �Tags� for annotation in text, e.g., indicate sections and head-
ings, emphasis, quotations, . . .

� Lightweight markup

� ASCII-only punctuation marks for �tags�

� Human readable, simple syntax, standard text editor su�cient to
read/write

� Tool support

* Comparison and merge, e.g., three-way merge

* Conversion to target language (e.g. (X)HTML, PDF, EPUB,
ODF)

· Wikis, blogs

· pandoc can convert between lots of languages

16

https://about.gitlab.com/
./texts/Git-Workflow-Instructions.html
https://en.wikipedia.org/wiki/Lightweight_markup_language
https://en.wikipedia.org/wiki/Merge_(version_control)#Three-way_merge
https://pandoc.org/

5.2 Markdown

� Markdown: A lightweight markup language

� Every Git repository should include a README �le

� What is the project about?

� Typically, README.md in Markdown syntax

� Learning Markdown

� In-browser tutorial (source code under MIT License)

� Cheatsheet (under CC BY 3.0)

5.3 Org Mode

� Org mode: Another lightweight markup language

� My favorite one

� For details see source �le for this presentation as example

6 Conclusions

6.1 Summary

� VCSs enable collaboration on �les

� Source code, documentation, theses, presentations

� Decentralized VCSs such as Git enable distributed, in particular o�ine,
work

� Keeping track of �les' states

* With support for subsequent merge of divergent versions

� Work�ows may prescribe use of branches for pull requests

� Documents with lightweight markup are particularly well-suited for Git
management

6.2 Where to go from here?

� Version control is essential for DevOps

� Combination of Development and Operations, see [JbA+16;WFW+19]

� Aiming for rapid software release cycles with high degree of automa-
tion and stability

� Variant based on Git is called GitOps, see [Lim18]

� Self-service IT with proposals in pull requests (PRs)

� Infrastructure as Code (IaC)

17

https://en.wikipedia.org/wiki/Markdown
https://www.markdowntutorial.com
https://github.com/gjtorikian/markdowntutorial.com/blob/master/LICENSE.txt
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://orgmode.org/
https://gitlab.com/oer/cs/programming/blob/master/Git-Introduction.org

6.3 Concluding Questions

� What did you �nd di�cult or confusing about the contents of the presen-
tation? Please be as speci�c as possible. For example, you could describe
your current understanding (which might allow us to identify misunder-
standings), ask questions in a Learnweb forum that allow us to help you,
or suggest improvements (maybe on GitLab). Most questions turn out
to be of general interest; please do not hesitate to ask and answer in the
forum. If you created additional original content that might help others
(e.g., a new exercise, an experiment, explanations concerning relationships
with di�erent courses, . . .), please share.

Bibliography

License Information

This document is part of an OER collection to teach basics of distributed sys-
tems. Source code and source �les are available on GitLab under free licenses.

Except where otherwise noted, the work �Git Introduction�, © 2018-2023
Jens Lechtenbörger, is published under the Creative Commons license CC BY-
SA 4.0.

Note: This PDF document is an inferior version of an OER HTML page;
free/libre Org mode source repository.

18

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=67801
https://gitlab.com/oer/oer-courses/cacs/
https://gitlab.com/oer/oer-courses/cacs
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://oer.gitlab.io/oer-courses/cacs/Git-Introduction.html
https://gitlab.com/oer/oer-courses/cacs

