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1 Introduction

1.1 Learning Objectives

e Explain “distributed system” and related major notions

— Definition, examples, goals and challenges
— Basic scalability techniques

— Logical time, consistency, consensus
e Contrast synchronous and asynchronous distributed systems

e Compute vector timestamps for events in asynchronous systems and rea-
son about consistency

1.2 Context for CACS
e CACSs are distributed systems

— Distributed systems consist of multiple parts, which may reside on
different machines

* (Definitions on later slides)

* (Think of your phone: Apps that need network connectivity to
work properly are part of distributed systems)

e Four sessions on technical aspects of CACSs

— Previously



x (Git as sample distributed communication and collaboration sys-
tem

— Here: Distributed systems (DSs) in general
— Upcoming
x Internet as fundamental infrastructure for DSs
x Web and e-mail as sample distributed applications

1.3 Communication and Collaboration

e Communication frequently takes place via the Internet

— Telephony
— Instant messaging
— E-Mail

— Social networks
e Collaboration frequently supported by tools using Internet technologies

All of the above means for communication

ERP, CRM, e-learning systems

— File sharing: Sciebo, etherpad, etc.

— Programming (which subsumes file sharing): Git, subversion, etc.

e All of the above are instances of DSs

1.4 Ubiquity
e DSs are everywhere

— Decentralized, heterogeneous, evolving



Figure 1: “Internet of Things” by Wilgengebroed on Flickr under CC BY 2.0;
from Wikimedia Commons

— Variety of applications
— Variety of physical networks and devices

x Cloud computing, browser as access device

e IT permeates our life

— Internet of Things (IoT)

— From smart devices to smart cities

e How does that really work?

— Complexity? Functionality?
— Security? Privacy?
2 Distributed Systems

2.1 Definitions
e A distributed system (DS) is ...


https://www.flickr.com/photos/wilgengebroed/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:Internet_of_Things.jpg
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Internet_of_things

— Leslie Lamport: “one in which the failure of a computer you didn’t
even know existed can render your own computer unusable”

* (Lamport is Turing Award winner and (co-) author of seminal
papers cited in this presentation)

Figure 2: “Photo of Leslie Lamport” under CCO 1.0; from Wikimedia Commons

— Tanenbaum and van Steen [TS07]: “a collection of independent com-
puters that appears to its users as a single coherent system”

— Coulouris et al. [Cou+11]: “a system in which hardware and soft-
ware components located at networked computers communicate and
coordinate their actions only by passing messages”

— Thoughts, examples?

This slide shows several definitions for the term “distributed system” (DS). Please think
about them on your own. Audio continues with the final bullet point.

While the first definition by Lamport may sound like a joke, it captures the essence of DSs
as expressed by the subsequent definitions, which are cited from standard textbooks on DSs:
Such systems consist of multiple computers that communicate to achieve some common goal
or functionality, and it may not be immediately visible to users which computers controlled
by whom are involved how for what purposes. (Note that any “smart” device is or embeds a
computer.)

Typical examples for DSs include all “cloud” or Web based systems, e.g., e-learning plat-
forms where a browser on one computer communicates with processes on other machines.

For a counter-example, consider software on your own computer that also works when
your computer is offline. E.g., if you disconnect your computer from the Internet and write
a document that is stored on your local disk, you interact with a non-distributed system. If
you connect your computer to the Internet, the situation is less clear: Depending on operat-
ing system and installed software, all kinds of interactions may happen “in the cloud™ e.g.,
automatic backups; spell or virus checking; activity tracking.

Coming back to Lamport’s definition, maybe consider this tweet (Dec. 2021) which high-
lights that some vacuum cleaners are part of a DS. Thus, one may be unable to use such
devices if machines elsewhere on earth fail. As a side remark, I like to stay in control of my
devices, which I believe to require free software. Besides, being “smart” usually means being
distributed and, according to Hypponen’s Law, being vulnerable.

Returning to topics of this presentation and Web based examples of DSs, note that what we
might think of as “Web server” is frequently a complex DS itself, consisting of lots of machines
for load balancing and architectural reasons. E.g., a “Web server” may be implemented by
lots of physical machines that share the load created by millions of clients {with techniques for
scalability presented on subsequent slides). In addition, each Web server may access database
servers or other machines in the background, say, to retrieve or validate payment information
during client interactions or to track and trace user behavior under surveillance capitalism.
Topics of subsequent presentations are meant to empower you when dealing with DSs.
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2.2 Internet vs Web
e (Preview on upcoming sessions)

— The Internet is a network of networks
* Containing, e.g., our home networks, university networks, ISPs,
etc.

- Connectivity for heterogeneous devices in DSs, regardless
of their home network

x Connectivity enabled by various protocols

- IPv4 and IPv6 for host-to-host connectivity (IP = Internet
Protocol)

- TCP and UDP for process-to-process connectivity (e.g.,
process of Web browser talks with remote process of Web
server)

- TCP/IP to indicate a protocol stack, transmission of TCP
data over IP

— The Web is an application using the Internet

« Clients and servers talk HTTP (another protocol) over TCP /IP
- E.g., GET requests of HTTP ask for HTML pages (and more)
- Web servers provide resources to Web clients (browsers, apps)

— Internet and Web are and contain DSs

2.3 Technical DS Challenges
e No shared memory but message passing

e Concurrency

Autonomy and heterogeneity

Neither global clock nor global state

Independent failures
e Hostile environment, safety vs security

Note that in non-distributed systems, within a process its threads share an address space,
and processes may share selected regions of memory, which allows them to share data struc-
tures as well as to coordinate and cooperate with little overhead. In distributed systems, such
sharing and cooperation relies on message passing, adding additional complexity and latency.

Also note that even in non-distributed systems, concurrency may lead to race conditions,
asking for mutual exclusion (MX) and raising various MX related challenges. Clearly, such
challenges will also arise in DSs, but they are aggravated by several facts. First, different
parts of a system may be run by different autonomous organizations with different goals and
different choices concerning hardware, software, and cooperation. Thus, heterogeneity is to
be expected and needs to be overcome. Second, we will see that it is already difficult (or
even impossible) to agree on such seemingly simple facts as the current time, which led to
the development of logical time to avoid the need for globally synchronized time. Similarly,
it should not come as a surprise that with multiple autonomous parts, no single party exists
that could tell the current global state of a DS. Moreover, different parts of a DS may fail
at any point in time (e.g., due to power outage, hardware failure, bugs), but they may also
be attacked at any point in time, bringing all issues of single systems related to safety and
security to the table.
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2.4 DS Goals

e Make resources accessible

— E.g., printers, files, communication and collaboration
e Openness

— Accepted standards, interoperability
e Various distribution transparencies

e Scalability
(Source: [TS07])

2.4.1 Distribution Transparencies

e Transparency = Invisibility (hide complexity)
e Sample selection of transparencies from ISO/ODP [FLM95]

— Location t.: clients need not know physical server locations

— Migration t.: clients need not know locations of objects, which can
migrate between servers

— Replication t.: clients need not know if/where objects are replicated

— Failure t.: (partial) failures are hidden from clients

2.4.2 Scalability

e Dimensions of scale

— Numerical: Numbers of users, objects, services
— Geographical: Distance over which system is scattered
— Administrative: Number of organizations with control over system
components
e Typical scalability techniques
— Replication, caching, partitioning

e (Scale up vs out)

(Based upon: [Neu94])

As a side note, scaling of hardware comes in two variants:

1. Scale-up (also called vertical scaling), which means to upgrade given hardware (e.g., to
add more RAM or more CPU cores)

e It should be obvious that the potential for scaling up is limited.

2. Scale-out (also called horizontal scaling), which means to add additional machines,
often in the form of off-the-shelf PC hardware

e Here, the potential for scaling out is essentially unlimited.

e Typically, scale-out is used in combination with partitioning and replication to
be explained next.


https://en.wikipedia.org/wiki/RM-ODP

2.4.3 Replication

e To replicate = to copy to multiple machines/nodes

— Copies (or nodes managing them) are called replicas

* E.g., manually forked and cloned repositories with Git or auto-
matically managed redundancy with HFDS or Kubernetes

o Effects

— Increased availability (usability in presence of faults)

* System usable as long as “enough” replicas available
— Reduced latency

* Use local or nearby replica
— Increased throughput

* Distribute/balance load among replicas
e Challenge: Keep replicas in sync (consistent)
— Consensus required

Replication is a key technique in distributed systems to provide fault tolerance and to
handle server load. To replicate simply means to provide redundant copies of “something”, be
it hardware, data, or services. E.g., in the context of Git, forking and cloning create copies
of repositories. Thus, forks and clones are examples of manually managed replicas. Probably
more interestingly, automatically managed replication exists as well, e.g., in distributed file
systems such as HDF'S in the Apache Hadoop ecosystem or Kubernetes as cluster management
software for automating software deployment and scaling. In any case, replication comes with
several positive effects and one major challenge as sketched next.

Replication is a mechanism for fault tolerance, which improves the availability of systems
under failure situations: Even if single replicas fail (e.g., due to power failures, bugs, or
attacks), the overall system may still work as expected by serving requests from the remaining
replicas.

In addition, replication usually reduces latency by serving requests from nearby replicas.
As an example, this happens for major web sites with the help of content delivery networks
(CDNs).

Moreover, replication is a mechanism for load balancing, which increases the throughput
of distributed systems: Each replica is powerful enough to serve a certain number of clients
or customers, and by adding more replicas we scale horizontally and are able to serve more
clients in total.

Replication does not only come with positive effects, though: As replicas are supposed
to be copies of each other, their synchronization in response to updates presents a major
challenge. In the context of Git, merge conflicts may arise and require manual resolution to
restore a consistent state, while various consistency models with accompanying protocols exist
in the context of distributed systems. Later on, we briefly revisit consistency and the more
general term consensus.

2.4.4 Caching

e To cache = to save (intermediate) results close to client

— Temporary form of replication

x E.g., CPU caches keep data from RAM closer to CPU; in turn,
RAM acts as cache for data from disk; in turn, disks act as caches
for “cloud” data
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o Effects

— Reduced load on server/origin

— Increased availability and throughput as well as reduced latency as
with replication

e Challenge: Keep cache contents up to date

Caching is a classical technique to speed up computations, even in non-distributed systems.
E.g., the memory hierarchy embeds caching at multiple levels: CPUs are equipped with
small and fast memory chips, called CPU caches, which provide fast access to currently used
instructions and data, avoiding relatively slow accesses to main memory (RAM). Main memory
in turn can cache data loaded from even slower disks, and disks can cache data from remote
network locations.

As an example in distributed systems, web browsers use the local file system to cache
recently accessed web resources (e.g., images, HTML, CSS, and JavaScript files), making
them locally available for upcoming visits of the same web site (avoiding network latency and
reducing load on web servers). Mechanisms such as conditional requests enable web browsers
to detect whether their cached resources are still current.

In essence, caching can be understood as temporary form of replication, leading to similar
positive and negative effects.

2.4.5 Partitioning

e To partition = to spread data or services among multiple machines/nodes

— Each node responsible for subset

— (Sharding = partitioning in shared-nothing architecture)
o Effects

— Reduced availability: each node is additional point of failure

* If node fails, its data/services are not available

* (To improve availability, partitioning usually paired with repli-
cation)

— Reduced latency and increased throughput

* Each node operates on (small) subset

- (Partial) results on subsets produced fast; combined into
overall result

* Nodes operate in parallel
- (Think of search in large set of data)

Partitioning is a key technique in distributed systems to provide horizontal scalability.
Here data or functionality (or both) are distributed (or partitioned) into disjoint subsets (or
partitions), each of which is assigned to a different machine. (Sharding is a marketing term
for this technique, where partitions are called shards.)

On the negative side, partitioning reduces the availability of the overall system, as each
machine is an additional point of failure, and the failure of a single machine makes at least
part of the system unusable. To counteract this drawback, partitioning is usually combined
with replication such that multiple replicas are responsible for the same partition.

On the positive side, each machine is now only responsible for a subset of the overall load,
and all machines can operate in parallel, leading to reduced latency and increased throughput.
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2.5 Review Question

Prepare an answer to the following question

e How are replication, caching, and partitioning related to availability and
scalability of distributed systems?

3 Models

3.1 System Models

e Distributed systems share important properties
— Common design challenges
e Models capture properties and design challenges

— Different types of models

* Physical models
- Computers, devices, and their interconnections
* Architectural models

- Entities (e.g., process, object, component), their roles and
relationships (e.g., client, server, peer)

* Fundamental models
- E.g., interaction, consistency, security

— Abstract, simplified description of relevant aspects

*x With different layers of abstraction (next slide)

(Source: [Cou+11])

3.2 Layering
e Use abstractions to hide complexity

e Abstractions naturally lead to layering

General technique in Software Engineering and Information Systems
— Alternative abstractions at each layer

* Abstractions specified by standards/protocols/APIs
— Thus, problem at hand is decomposed into manageable components

— Design becomes (more) modular



3.2.1 Hard- and Software Layers
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Figure 3: “Figure 1.2 of [Hail7]” by Max Hailperin under CC BY-SA 3.0;
converted from GitHub

e OS provides API that hides hardware specifics
e Middleware provides API that hides OS specifics

¢ (Distributed) Applications use middleware API

3.2.2 Middleware
e Software layer for distributed systems
— Hide heterogeneity

— Provide convenient programming model

* Typical building blocks
- Remote method/procedure calls
- Group communication
- Event notification
- Placement, replication, partitioning
- Transactions
- Security

e Examples beyond class goals

— ONC/Sun RPC, CORBA, Java RMI
— Web services via Service Oriented Architecture (SOA) or REST

(Based upon: [Cou+11])

3.2.3 Layered Network Models

e Upcoming session: Layering as core mechanism of network models

— ISO OSI Reference model with 7 layers

— Internet model with 4 layers
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4 Time and Consistency

4.1 Clocks

e Every computer with own internal clock

— Used for local timestamps
e Every internal clock with own clock drift rate

— Clocks vary significantly unless corrections are applied
e Different correction approaches

— Obtain time from external source with accuracy guarantee
* GPS, NTP

e Alternatively, use logical time

Clocks are used to measure passing of time. To that end, clocks produce timestamps,
which can be compared against each other to figure out what events happened before or after
other events. Clearly, that can only work if clocks used at different places produce (nearly)
the same timestamps when read at the same point in time. This slide mentions clock drift
as major challenge of physical clocks, correction approaches to address that challenge, and
logical time as alternative, which is presented in more detail on later slides.

Before continuing it may be worthwhile to think about what events can be ordered via
timestamps. While we may assume time to be totally ordered, under relativistic effects that
turns out not to be the case: We may not be able to decide for two events which of them
happened before the other (if any). So even in the real world, time only provides a partial
order for events.

As we will see, in DSs frequently logical clocks are used to assign timestamps to events,
and those also only provide a partial order for events. Some pairs of events remain unordered,
in which case they are concurrent. Often, unordered actions result in arbitrary or even incon-
sistent outcomes, which points to a need for (a) mechanisms to detect concurrent events (and
vector clocks provide one such mechanism) and (b) mechanisms to reach consensus about the
desired final outcome, both of which are discussed subsequently.

4.2 Assumptions on Clocks and Timing
e Two extremes
— Asynchronous
* Nothing is known about relative timing

— Synchronous

*x Time is under control, different processes can proceed in lock-
step

e April 2018, HUYGENS, [Gen+18]: Time synchronization within tens of
nanoseconds based on machine learning

— (1 Nanosecond = 107 s)

11
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4.2.1 Asynchronous Distributed System
e Completely asynchronous [FLP85]

— No assumptions about

x relative speeds of processes,
* time delay in delivering messages,
x clock drift.

— Thus,

* algorithms based on timeouts cannot be used,
* impossibility to tell whether some process has died or is slow.

e Fits the Internet

— Uncontrolled resource sharing implies unbounded delays.

— Solutions for asynchronous systems also work for synchronous ones.

4.2.2 Synchronous Distributed System

e Has known time bounds for

— execution of process steps,
— transmission of messages,

— clock drift rates.
e Major strength
— Algorithms can proceed within rounds.

x For every process, a defined behavior per round exists.

— Timeouts can be used to detect failures.

4.3 Logical Time
e Key insight of Lamport [Lam78|

— Events can be ordered via “happened before” relation

* Without reference to physical clock
*x Giving rise to partial order of logical timestamps

e Happened before, —

1. Each node/process knows order of local events

— Logical clock produces increasing non-negative integers as times-
tamps

2. Sending of message, event s, must have happened before receipt of
that message, event r, denoted by: s — r

3. Transitivity rule: If a — b and b — ¢ then a — ¢

12
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4.3.1 Sample Lamport Timestamps

time_

Figure 4: Lamport timestamps for sample events

e Three processes: P1, P2, P3

— Each process with local clock (initially 0)
% Clock incremented for each event (including send/receive)
— Diagonal arrows represent messages

* Message includes timestamp of sender

* Receiver computes maximum of sender’s and own timestamp,
increments result

The graph shown here contains processes P1, P2, and P3 and events occurring in the
context of these processes. Time progresses from left to right, and event e;; occurs in the
context of process Pi. Sample events might indicate completion of some algorithmic steps,
interaction with I/O, or communication of messages.

The processes are supposed to be part of one DS, but “live” on separate machines. Each
machine has its own Lamport clock to produce Lamport timestamps, which are indicated
underneath the events.

13



4.3.2 Lamport Timestamp Properties

€31 €32

time_

Figure 5: Lamport timestamps for sample events

e Consider events ¢ and f
— Let I(e) and I(f) denote their Lamport timestamps

— If e — f then i(e) < I(f)
x B.g., e11 > egand 1 =I(eqq) <l(esz) =4
— However, if I(e) < I(f) then we cannot conclude anything
x E.g., e3s “last” event but not largest timestamp (4 smaller than
several other timestamps)

Intuitively, this slide states that
1. on the positive side the happened-before relation is embedded in Lamport timestamps,

but
2. on the negative side, one characteristic of “real” timestamps is missing: Lamport times-
tamps do not (always) allow us to identify concurrent events.

Vector clocks, presented next, overcome this limitation.

14



4.3.3 Vector Clocks
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Figure 6: Vector timestamps for sample events

e Vector clock timestamp = vector of logical timestamps

— Roots in [Par+83], see [RS95] for survey
— One component per location
* Incremented locally

— “Merge” of vectors when message received

x Component-wise max, followed by local increment
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4.3.4 Vector Clocks and Happened Before
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Figure 7: Vector timestamps for sample events

e Consider events e and f

— Let v(e) and v(f) denote their vector timestamps
— e — fif and only if v(e) < v(f)

* (Here, “<” is component-wise comparison: At least one compo-
nent is strictly smaller; others are less-or-equal)

e Conflicts/concurrency visible: incomparable vectors

— Actions at different locations without taking all previous events into
account (e.g., eas vs e14; merged at ejs)

Think about a group exercise assigned to 3 students, namely P1, P2, and P3. In this
graph, P1 and P2 start working on a solution in parallel, adding paragraphs to their own,
initially empty documents, while P3 is idle.

After adding their first individual paragraphs, both P1 and P2 send their partial solutions
(with incomparable timestamps, indicating concurrent/conflicting/unsynchronized work) to
P3: When the message from P1 arrives, P3 does not have to do anything special, because
the received message has a larger timestamp (which is (0, 0, 2)) than his own (all zeros),
indicating that the received message covers all own prior knowledge (which was nothing at
all).

When the message from P2 arrives, however, P3 sees an incomparable timestamp (neither
of the vectors (1, 0, 2) and (0, 2, 0) is larger than the other). This tells P3 that P1 and P2
worked independently, possibly producing conflicting partial solutions. Now, P3 needs to look
at both versions and decide how to merge them. If P3 is lucky, P1 and P2 worked on different
sub-tasks, so “merge” would just mean “copy&paste” into a single document; otherwise, P3
might really need to work. Regardless of how this merge is done, afterwards P3 produces the
new timestamp (2, 2, 2), which is larger than all other timestamps P3 is aware of, indicating
that all prior versions have been integrated.

If you are interested how vector clocks are used at Amazon to manage shopping carts, 1
recommend that you read this article: [DeC+07]
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4.3.5 Review Questions
Prepare answers to the following questions
e Why are Lamport timestamps not sufficient to identify concurrent events?

e How could a continuation of the sample scenario for vector clocks look like
such that all shown events are taken into account at all processes? How
would the resulting timestamps look like?

4.4 Consistency
e Lots of different notions of consistency, e.g.:

— “C” in ACID transactions: Integrity constraints satisfied
— “I” in ACID transactions: Serializability
— All replicas have same value

* One formal criterion is linearizability

— Eventual consistency: If no updates occur for some time, all repli-
cas converge to the same value

* Vector timestamps to detect inconsistency

— Client-centric vs data-centric consistency: See text books
e Consistency requires distributed consensus/agreement

— Next slide

4.5 Consensus
Informal Statement

e Set of (distributed) processes needs to agree on value after some processes
proposed values.

e Eg.:

— Who owns a lock?
— What is the current state of a replica?
— Who is the new primary server after a crash of the old one?

— Who owns a particular Bitcoin?

4.5.1 Byzantine Generals

e Famous consensus example: Byzantine generals problem by Lamport,
Shostak, Pease (1982) [LSP82]

— Three or more, possibly treacherous, generals need to agree whether
to attack or to retreat
— Commander issues order, lieutenants must decide

* Treacherous commander may issue contradicting orders to lieu-
tenants

17


https://en.wikipedia.org/wiki/Linearizability

* Treacherous lieutenants forward contradicting information to oth-
ers

— If not all parties reach the same decision (consensus), the attack fails

e Nowadays, “Byzantine failure” is a standard term

— Arbitrary failure/misbehavior (hardware, software, attacks)

4.5.2 Results on Consensus

e Milestone results; IV processes, f of them faulty

1. [PSL&0], synchronous systems: Solutions only if N > 3f + 1.

2. [FLP83; FLP85], asynchronous systems: When f > 1, consensus
cannot be guaranteed.

3. [Lam98] (submitted 1990): Paxos algorithm for consensus in asyn-
chronous systems

— State machine replication
* [Lam98]: “It does not tolerate arbitrary, malicious failures,
nor does it guarantee bounded-time response.”

4. [CL99]: PBFT with digital signatures, N > 3f +1
5. [Bur06]: Chubby service (locking, files, naming)

— Implementing Paxos at heart of Google’s infrastructure

5 Conclusions

5.1 Summary
e Distributed systems are everywhere
— Internet as core infrastructure

— Networked machines coordinated with messages

— Various challenges and corresponding techniques
e Asynchronous distributed systems are built without global time

— Instead, logical timestamps, vector clocks
— Consensus is standard requirement in lots of scenarios

x Yet, consensus is hard in presence of failures

5.2 A Different Summary

Warning! External figure not included: “Distributed systems” (©) 2016 Julia
Evans, all rights reserved from julia’s drawings. Displayed here with personal

permission.
(See HTML presentation instead.)
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5.3 Concluding Questions

e What did you find difficult or confusing about the contents of the presen-
tation? Please be as specific as possible. For example, you could describe
your current understanding (which might allow us to identify misunder-
standings), ask questions in a Learnweb forum that allow us to help you,
or suggest improvements (maybe on GitLab). Most questions turn out
to be of general interest; please do not hesitate to ask and answer in the
forum. If you created additional original content that might help others
(e.g., a new exercise, an experiment, explanations concerning relationships

with different courses, ...), please share.
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