
The Relational Model (for Data Warehousing)

Jens Lechtenbörger

Winter Term 2023/2024

1 Motivation

Relational database technology is pervasive in our world. The relational model,
de�ned in 1970 by Turing award winner Edgar F. Codd in the famous paper
[Cod70], provides the foundations for that technology. On a small scale, web
browsers make use of relational databases to store cookies and history (thus,
our phones contain several of them!); on larger scales, organizations manage
data for various applications such as ERP, CRM, or �nancial operations in
such databases. For business intelligence purposes, organizations frequently
integrate the data of these isolated, application-speci�c database systems in
another relational database system, namely the data warehouse.

Since 1970, numerous commercial and free/libre and open source relational
database management systems have been implemented, and new ones are still
being developed continuously (e.g., to utilize technological advances).

Hence, a solid understanding of relational data management concepts is ad-
vantageous for the design and implementation of IT and information systems in
general and for data warehouses in particular.

2 Learning Objectives

Learning objectives specify what I expect you to be able to do. In general, some
learning objectives qualify as tasks in an exam.

� Prerequisites (sketched below as well)

� Query relational databases with SQL

� Design relational databases in third normal form (3NF)

* Assert/identify FDs and keys

� Express queries in relational algebra

� Create and read tree representations of query expressions (for query
optimization)

1

https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://en.wikipedia.org/wiki/Customer_relationship_management

3 Prerequisites

3.1 SQL

I suppose that you know SQL, both to de�ne schemata (with CREATE TABLE)
and to query data (with SELECT). While our �rst session will not make much use
of SQL (except as points of reference when introducing the relational algebra
below), future sessions will deal with (a) OLAP features of SQL that build
upon standard aggregation queries and (b) query optimization. To refresh your
querying skills, you could play the text adventure SQL Island. In that game,
you are supposed to escape an island by executing appropriate SQL commands
(to which you are introduced along the way). Students reported this to be fun!

Besides, in Learnweb you �nd a script to populate a PostgreSQL database
with the TPC-H database schema, which will serve as sample database in
upcoming sessions. More details are provided in a separate document with
database instructions.

3.2 Vocabulary

In SQL, we de�ne the schema of a table with CREATE TABLE, where a schema
speci�es the attributes/columns of the table with their data types and depen-
dencies/constraints (e.g., primary and foreign keys, not-null and check con-
straints). With INSERT, DELETE, and UPDATE we manipulate the data stored
as rows in tables. The collection of rows is also called instance of the schema.
The database management system (DBMS) makes sure that instances conform
to their schemata (by refusing manipulations that would violate data types or
constraints).

�Tuple� is a formal term for �row�, �relation� for the instance of a schema (a
set of tuples).

Given a relation, a key is a minimum set of attributes to identify each tuple
uniquely (i.e., there cannot exist two di�erent tuples that share the same val-
ues for all key attributes). E.g., the set of attributes FullName, FullAddress,
DateOfBirth might form a key in a relation about people; Nationality and
IDCardNo might form another key in that same relation.

In SQL, we can declare one of the keys as primary key to the DBMS.
In practice, the designer frequently adds an arti�cial key without any ap-

plication semantics as primary key to the schema (e.g., an ID column with
automatically increasing integer values); such arti�cial keys are called surrogate

keys.
Keys are a special form of functional dependencies (FDs). Hopefully, you

have seen FDs in the context of database normalization to avoid redundancy
and database anomalies.

In case you are not familiar with database normalization, the 6-page article
[Ken83] is �A simple guide to �ve normal forms in relational database theory�.
It contains the following informal descriptions of second (2NF) and third normal
form (3NF):

� �Second normal form is violated when a nonkey �eld is a fact about a
subset of a key.�

2

https://sql-island.informatik.uni-kl.de/?lang=en
https://en.wikipedia.org/wiki/Database_normalization

� �Third normal form is violated when a nonkey �eld is a fact about another
nonkey �eld, . . . �

� �Under second and third normal forms, a nonkey �eld must provide a fact
about the key, the whole key, and nothing but the key.�

For class purposes, we focus on the third normal form (3NF).

3.3 FDs and 3NF with Python

This introduction to functional dependencies and 3NF normalization with syn-
thesis might be useful as crash course. Note that the introduction is generated
from documentation of this Python module, which allows you to experiment. A
Jupyter notebook for in-browser experiments is available as well.

In an upcoming session, you will see data warehouse schema design along
the lines of 3NF normalization.

3.4 Self-study

You might use tasks in this section to check your understanding before our class
meeting. Please use our discussion forum or shared pad in case of questions.

3.4.1 Keys

What is a key, what a primary key? Suggest more keys for the relation about
people mentioned above.

3.4.2 Functional Dependencies

Consider the sample relation Account visualized in Table 1, where Balance
indicates the balance of an account at the end of a given day, while CustAge
indicates the age of a customer on that day. The Python module also contains
FDs for that relation.

Table 1: Sample Account relation.
Account AccID Date CustID Type Balance CustAge

1 2015-01-01 42 checking 1000 42
2 2015-01-01 42 savings 2000 42
3 2015-01-01 1 checking -300 22
1 2015-01-02 42 checking 960 43

1. Based on your domain knowledge, which FDs would you assert for the
schema of that relation (i.e., which FDs are semantic integrity constraints
that will hold in every instance)?

2. Verify that the relation satis�es the following (incomplete) list of FDs:

� AccID Date → CustAge

� AccID Date → AccID Date CustID Type Balance CustAge

� AccID → CustID

3

https://oer.gitlab.io/cs/functional-dependencies/functional_dependencies.html
https://oer.gitlab.io/cs/functional-dependencies/functional_dependencies.html
https://gitlab.com/oer/cs/functional-dependencies/-/blob/master/functional_dependencies/functional_dependencies.py
https://mybinder.org/v2/gl/oer%2Fcs%2Ffunctional-dependencies/HEAD?filepath=notebooks%2FCodd-3NF-ex.ipynb

� Balance → AccID

� Date → Date

3. Why are the following no valid FDs for that relation?

� CustID → AccID

� AccID → Balance

� CustID Date → Balance

4. What can you say about the birthday of the customer with ID 42? What
about the net worth of transactions on the account with ID 1 on 2015-01-
02?

5. Why is the schema of Table 1 not in 3rd Normal Form (3NF)?

3.4.3 Solutions?

I strongly suggest that you think about the above questions on your own now.
Answering them might take seconds (if you are familiar with the topics) or days
(e.g., if this is your �rst encounter with the relational model). If you are not
sure whether your answers are correct, �rst note that above I pointed to an
introduction to functional dependencies and 3NF normalization with synthesis,
which might be useful as crash course. Go there �rst.

Afterwards, you can �nd some anwers to the above questions here. Please
keep in mind that we learn by doing, not by watching others.

4 Relational Algebra

SQL is a declarative query language as users declare how the result should
look like (e.g., in terms of selection conditions in the WHERE clause and de-
sired attributes after SELECT). It does not specify what operations to execute

in what order (e.g., when joining multiple tables) or with what data structures
and algorithms; instead, procedural languages are concerned with such more
execution-speci�c questions.

Relational algebra (introduced by Codd in his seminal paper [Cod70]) is
a procedural query language for relational data (see, e.g., [AHV95; GUW08;
Vos08] for modern introductions), whose basic operations are the following six:
selection, projection, natural join, union, di�erence, and renaming.

As part of query processing, the DBMS translates a SQL query into an
equivalent algebraic representation, ultimately resulting in a query evaluation

plan (QEP), which speci�es what operations to execute in what order with what
algorithms and data structures. We will revisit QEPs in the context of query
processing and optimization for OLAP.

The following explanations cover selection, project, and natural join based
on examples without any formalization. Please ask (or consult textbooks) if
necessary. Also note that the tool RelaX allows you to practice your query
skills, for which you �nd a pointer below.

Consider a relation r over a set X of attributes. Roughly, the selection of
r according to some selection condition φ, denoted by σφ(r), produces a subset

4

https://oer.gitlab.io/cs/functional-dependencies/functional_dependencies.html
https://lechten.gitlab.io/teaching.html#slide-learning
https://dbis-uibk.github.io/relax/landing

Table 2: Result of σCustAge>42(Account).
AccID Date CustID Type Balance CustAge

1 2015-01-02 42 checking 960 43

that contains those tuples of r that satisfy the condition φ. Thus, φ is what
would occur in a WHERE clause in SQL. See Table 2 for an example.

Given a subset of Z ⊆ X, the projection of r on Z, denoted by πZ(r),
produces a relation where the attributes of r that do not occur in Z are removed
(i.e., that is restricted to the attributes in Z). Thus, Z would occur as attribute
list after the SELECT keyword in SQL. See Table 3 for an example.

Table 3: Result of πAccID,Date,Balance(Account).
AccID Date Balance

1 2015-01-01 1000
2 2015-01-01 2000
3 2015-01-01 -300
1 2015-01-02 960

The natural join of relations r1 and r2, denoted by r1 ./ r2, produces a
relation over the union of attributes of r1 and r2, where tuples of r1 and r2 are
combined in a �natural� way based on equality of shared attributes. E.g., if r1
is the result shown in Table 3 and r2 is a relation that stores for each AccID
the city of the bank's branch running the account, the result of r1 ./ r2 might
appear as in Table 4.

Table 4: Result of r1 ./ r2.
AccID Date Balance BranchCity

1 2015-01-01 1000 Münster
2 2015-01-01 2000 Frankfurt
3 2015-01-01 -300 München
1 2015-01-02 960 Münster

In addition, for relations sharing the same attributes, their union and their
di�erence are just their usual set operations.

Besides, renaming of attribute A into attribute B of r, denoted by ρB ← A,
is a technical operation (that corresponds to AS in SQL), e.g., to make sure that
attribute names are set up properly for join operations.

Building upon the above six basic operations, other operations can be de-
�ned, e.g., intersection, Cartesian product, or variants of join. In addition,
extensions of the relational algebra have been de�ned that increase the expres-
sive power, e.g., for queries involving aggregation.

Note that the relational algebra is an algebra in the sense that inputs to op-
erations are relations, their outputs are relations, and operations can be nested.
For example, the following query asks for names of customers with large account
balances.

πName,Balance(Customer ./ σBalance>1000000(Account))

5

4.1 Self-study with RelaX

The tool RelaX allows you to execute queries expressed in the relational algebra.
This hyperlink leads to a con�guration of RelaX which is set up with a toy
database for sample queries (based on that Gist). The following is an ASCII
formulation of the previous query for use with RelaX:

pi name, balance (

Customer

join

sigma balance > 1000000 (Account))

Copy and paste the ASCII formulation into this RelaX con�guration and
press �execute query�. Note how not only the result but also a tree representa-
tion (which is the basis for a query evaluation plan, to be discussed as part of
OLAP optimization) and a representation using the symbols introduced above
are shown.

How does the previous query work? What about the following variant?

sigma balance > 1000000 (

pi name, balance (Account join Customer))

5 Tentative Session Plan

Our session might follow this agenda, where di�erent students/groups might
work with di�erent speeds on items 2�4. I reserve about 20 minutes for item 5.

1. Interactive review of self-study tasks

2. Normalize schema of Table 1

3. Express sample queries in the Relational Algebra

4. First look at Task 1 of Exercise Sheet 2

5. Introduction to next topic

Bibliography

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995. url: https : / / wiki . epfl . ch /

provenance2011/documents/foundations%20of%20databases-

abiteboul-1995.pdf.

[Cod70] E. F. Codd. �A Relational Model of Data for Large Shared Data
Banks�. In: Commun. ACM 13.6 (1970), pp. 377�387. doi: 10.1145/
362384.362685. url: https://doi.org/10.1145/362384.362685.

[GUW08] H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The

Complete Book. 2nd. Pearson, 2008.

[Ken83] William Kent. �A Simple Guide to Five Normal Forms in Relational
Database Theory�. In: Commun. ACM 26.2 (1983), pp. 120�125.
doi: 10.1145/358024.358054. url: https://doi.org/10.1145/
358024.358054.

6

https://dbis-uibk.github.io/relax/calc/gist/02c807c63faf1d57d77f487d6a0726f4
https://gist.github.com/lechten/02c807c63faf1d57d77f487d6a0726f4
https://dbis-uibk.github.io/relax/calc/gist/02c807c63faf1d57d77f487d6a0726f4
https://wiki.epfl.ch/provenance2011/documents/foundations%20of%20databases-abiteboul-1995.pdf
https://wiki.epfl.ch/provenance2011/documents/foundations%20of%20databases-abiteboul-1995.pdf
https://wiki.epfl.ch/provenance2011/documents/foundations%20of%20databases-abiteboul-1995.pdf
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/358024.358054
https://doi.org/10.1145/358024.358054
https://doi.org/10.1145/358024.358054

[Vos08] G. Vossen. Data Models, Database Languages and Database Man-

agement Systems. 5th (in German). Oldenbourg, 2008.

License Information

Source �les are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

Except where otherwise noted, the work �The Relational Model (for Data
Warehousing)�, © 2018-2022 Jens Lechtenbörger, is published under the Cre-
ative Commons license CC BY-SA 4.0.

7

https://gitlab.com/oer/misc
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Motivation
	Learning Objectives
	Prerequisites
	SQL
	Vocabulary
	FDs and 3NF with Python
	Self-study
	Keys
	Functional Dependencies
	Solutions?

	Relational Algebra
	Self-study with RelaX

	Tentative Session Plan

