OLAP Optimization

Jens Lechtenborger

Winter Term 2023/2024

1 Context

OLAP queries usually ask for insights from “large” amounts of data. This session
is meant to provide initial pointers for naive and optimized executions of such
queries.

In general, there are two classes of approaches to speed up executions. The
first one rests upon the so-called KIWI principle: Kill it with iron. In this case,
we use more or more powerful machines (or both) to perform a given task in a
smaller amount of time. Use of more machines is called horizontal scaling, while
upgrades of individual machines (e.g., with more RAM, more/faster CPU cores,
GPUs) is called vertical scaling (see Figures 1 and 2). The potential of vertical
scaling is limited (e.g., by sockets on the mainboard) and costly.

Horizontal scaling enables parallel processing (this is also true for vertical
scaling with more CPU/GPU /compute cores), where a given query (or, more
generally, task) is split into smaller units that are processed in parallel to con-
struct an overall result.

Figure 1: Scaling up improves the performance of a single machine.

Selection of relevant data (e.g., with a WHERE clause in SQL) is a frequent
operation, which can clearly be executed faster with parallel processing. Note,
however, that bringing lots of data to lots of CPUs to discard most of the data
is a wasteful process (in terms of resource and energy usage), and parallelization

S
N
I
S
S
<
3
B
S
S

Y e
I

Figure 2: Scaling out distributes load over a fleet of systems.

does nothing to improve this situation. Nevertheless, parallelization resulting
from horizontal fragmentation (also called sharding or horizontal partitioning;
to be explained in a video) is a powerful technique, which, for example, enables
scalability

e of big data processing environments such as MapReduce [DG04] and
e of NoSQL and NewSQL databases,

both of which will be covered in other sessions.

The second class of approaches could be said to prefer brain over muscle. It
organizes data access differently. Indeed, we might specify, know, or learn where
relevant data is located and use this knowledge to not process irrelevant data in
the first place, again speeding up processing, but even with unchanged compute
resources. Below, you will see sorting and the construction of index structures
as examples for this class. Beyond these traditional techniques, there is consid-
erable progress in the area of self-tuning databases (see [CNO7] for a survey as
of 2007 and [Kra+19] for recent work whose first author studied Information
Systems in Miinster). Besides, specialized hardware platforms such as Enzian
offer hardware acceleration for near-memory data processing [Alo+20].

1.1 Prerequisites
e Explain binary search and the use of balanced tree structures for data
access in logarithmic time.
1.2 Learning Objectives (see slides)
e Explain query processing and optimization in general
e Explain fragmentation and indexing
— Reason about typical usage scenarios

¢ Estimate query execution times for different query evaluation plans (after
exercises)

e Explain and apply query rewriting in presence of materialized views

https://enzian.systems/enzian-spec/

2 Disk based data access

Consider a typical relational database, where each relation is stored as a se-
quence of fixed-size blocks on disk. In case of hard disks, data is recorded on
rotating magnetic platters, which cause a rotational delay before a disk’s read-
write head is positioned above the correct location when a random block is to
be transferred to main memory. Such a delay may be around 3ms for server
disks, limiting the number of blocks that can be accessed in random order to
about 300 per second. If neighboring/contiguous blocks are read from disk (e.g.,
for linear scans of entire relations), rotational delay occurs only once, and data
can be transferred with the disk’s full bandwidth, e.g., 200 MB/s. (If you never
used “bandwidth” to compute the time for the transfer of data of a given size,
maybe it helps to think of velocity calculations, where you compute the time
needed to cover some distance at some speed. In our setting, the size of data to
be transferred corresponds to the distance to be covered, while the bandwidth
corresponds to the speed. . .)

For solid-state drives (SSDs), no rotational delay exists, and random access of
an individual block may take about 0.1ms (with 10,000 blocks per second), while
high-end SSDs are able to transfer millions of 4 KiB (“Ki” is a binary prefix)
blocks per second (with transfer rates beyond GB/s), see IOPS at Wikipedia if
you are interested. (With SSDs, random access is still slower than sequential
access because (a) each I/0 request comes with overhead and (b) each random
access causes a block to be read, which may be much larger than what was
requested.)

3 Index structures

Index structures (or “indexes” for short; “indices” are small numbers attached to
variables) are data structures that materialize data in redundant form to speed
up query processing. You know indexes from everyday life. Think of a textbook,
which includes a keyword index at the end. Say, you want to read about indexes
in a textbook on databases. Clearly, you could read the text front to end, also
learning about indexes. For faster access, you could use the keyword index and
locate the index term: “index”

Next to each index term, you find pointers to pages on which the term
occurs. Clearly, looking up “index” in the index and following a pointer takes
some time, which defines the access latency/time which should be much lower
than in front-to-back reading.

Some notes are in order. A book is broken down into numbered pages, and
pages are arranged in sorted order. This corresponds quite nicely to relations,
whose tuples are stored in blocks on disk; often (see Section 4 for a counter-
example concerning dimension tables), those tuples are sorted according to the
primary key. When the index points you to a page, say 442, you do not look at
every page to find number 442 but apply a more efficient strategy, e.g., binary
search; please look up binary search at Wikipedia if you cannot explain how it
works. (Actually, as human beings we probably do not start in the middle but
use some heuristic based on a book’s thickness.) The same is true for tuples on
disk: If a tuple with a particular primary key value should be retrieved (with
tuples sorted by primary key), the database management system (DBMS) can

https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Binary_prefix
https://en.wikipedia.org/wiki/IOPS
https://en.wikipedia.org/wiki/Binary_search_algorithm

use binary search instead of a so-called sequential scan (which is reading front-
to-back, scanning every tuple for matching values).

Second, the page pointers of index entries in textbooks appear in mostly
random order: We do not expect index terms starting with a common prefix,
say “a’, to lead to neighboring pages. Indexes, where the order of index entries
does not agree with the physical order of data (here book pages) are called non-
clustered or secondary indexes. Typically, non-clustered indexes contain several
pointers per index term (“index structure” may be covered in different parts of
the book). Different DBMSs support different index structures (various forms of
trees, in particular B-trees, hash tables, bitmap indexes; please lookup B-trees
at Wikipedia if you cannot explain how they are used for search in O(logn)).

Third, books also contain other index structures, e.g., the table of contents
(TOC). The TOC contains pointers from headings of chapters and sections to
their starting pages. Again, if you are interested in learning about indexes,
you can scan the TOC for “index.” In case of a match, you now know where
to start reading (and, in contrast to the non-clustered keyword index, you can
expect that “indexes” are covered thoroughly in a section if its heading contains
that term). This time, the order of the index structure agrees with the order
of pages, classifying the TOC as primary or clustered index: Sections that are
neighbors in the TOC are also neighbors in the book itself. B-tree variants are
often used for clustered indexes, e.g., to speed up tuple retrieval based on key
values beyond binary search.

4 Rules of thumb

For fact and dimension tables, the following rules of thumb may serve as starting
points for physical database design [Gal+08]:
e Fact table

— Implement the primary key, which consists of foreign keys to the
dimension tables, as clustered index.

— Add one non-clustered index per (foreign) dimension key.

e Dimension table

(Note: A business key is a key that has meaning in the real world
or in a particular source system, e.g., ISBN for books or passport
numbers for customers. For improved flexibility, so-called surrogate
keys, often with strictly increasing integer values, are added in the
course of ETL processing in data warehouse systems.)

— Implement the surrogate primary key as non-clustered index.

— Build a clustered index for the business key.

— Based on the workload, add additional non-clustered indexes for fre-
quently used attributes.

5 Self-Study Tasks

The following tasks ask you to perform elementary back-of-the-envelope calcu-
lations to get a feeling for the impact of different query evaluation strategies.

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/B-tree

The videos do not cover such calculations; I hope that you can perform them
anyways based on this text. Please ask if you get stuck.

Suppose that hard disks with a rotational delay of 3.3 ms and a transfer rate
of 200 MB/s are used and that block transfers to main memory dominate query
execution costs. Each block on disk has a size of 4 KiB and contains a number
of tuples, one after the other, where the amount of storage necessary per tuple
depends on the relation’s number of attributes and their data types. Typically,
multiple tuples fit into a single block, and to access any of those tuples the entire
block containing it needs to be loaded into main memory. All blocks belonging
to one table are stored contiguously on disk.

1. How long does it take to transfer a random block into main memory (based
on rotational delay and transfer rate)?

2. Suppose that a query of the form SELECT * FROM Table WHERE
Condition is executed, where Table contains 8 million tuples on hard
disk and has a size of 4 GiB, which is not large for data warehouse sce-
narios.

(a)
(b)

How long does it take to read the entire table (i.e., either no WHERE
clause exists or it does not discard any tuple)?

Tuples on disk are not sorted in any way, no index exists.

How long does it take to execute the query if Condition selects about
1% of all tuples? How long if Condition selects exactly one tuple?
Hint: Note that data is not sorted. You may want to think about
best, worst, and average cases. For the case of “about 1% of all
tuples”, at what point in time can the query executor be sure to have
seen all matching tuples?

Suppose that Condition has the form Attribute = Value and that
Table is sorted by Attribute.

How long does it take to execute the query using binary search if
Condition selects 1% of all tuples? How long if Condition selects
exactly one tuple?

3. Watch the videos provided in Learnweb. Ask any questions that you may
have.

(a)

The second video ends with a question concerning the guarantees of
query optimization (slide 9): Why does optimization not lead to the
selection of the plan with lowest cost?

The answer to that question rests upon the use of heuristics for query
optimization.

To train relational algebra, the data for the optimization example of
the fourth video is accessible as Gist for RelaX (you may have used
RelaX for self-study tasks related to the Relational Model).

pi B, D (sigma A = ’c’> and E = 2 and R.C = S.C (R x S))

4. The video on materialized views contains a question at 9:10, which we
will discuss in class. You may find that the subsequent part hints at an
answer.

(Again, some thoughts are available separately.)

https://gist.github.com/lechten/97f07fac4adc9b7b6bca593cc0da2eef
https://dbis-uibk.github.io/relax/calc/gist/97f07fac4adc9b7b6bca593cc0da2eef

6 Tentative Session Plan

1. Questions on previous topics

2. Interactive review of self-study tasks

3. For the sample materialized view and queries contained in the slides: Dis-
cuss how the view can be used to speed up the queries.

4. Task 3 of Exercise Sheet 2.

5. If time permits, we may look at real query evaluation plans. (With Post-
greSQL, type EXPLAIN in front of a SQL query to see its plan; use EXPLAIN
ANALYZE to also execute it. Make sure that DBMS statistics are current
first, e.g., with VACUUM ANALYZE.)

6. Introduction to next topic

Bibliography

[Alo+20]

[CNO7]

[DG04|

[Gal+08]

[Kra-+19]

Gustavo Alonso et al. “Tackling Hardware /Software co-design from
a database perspective”. In: CIDR 2020, 10th Conference on Inno-
vative Data Systems Research. 2020. URL: http://cidrdb.org/
cidr2020/papers/p30-alonso-cidr20.pdf.

Surajit Chaudhuri and Vivek Narasayya. “Self-Tuning Database Sys-
tems: A Decade of Progress”. In: Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases (VLDB). 2007, pp. 3—
14. URL: http://www.v1ldb.org/conf/2007/papers/special/p3-
chaudhuri.pdf.

Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified data
processing on large clusters”. In: 6th Symposium on Operating Sys-
tems Design and Implementation. 2004. URL: https ://static.
usenix.org/publications/library/proceedings/osdi04/tech/
full_papers/dean/dean.pdf.

C. A. Galindo-Legaria et al. “Optimizing Star Join Queries for Data
Warehousing in Microsoft SQL Server”. In: 2/th International Con-
ference on Data Engineering. 2008, pp. 1190-1199. Do1: 10.1109/
ICDE.2008.4497528.

Tim Kraska et al. “SageDB: A Learned Database System”. In: CIDR
2019, 9th Biennial Conference on Innovative Data Systems Re-
search. 2019. URL: http://cidrdb.org/cidr2019/papers/pl17-
kraska-cidrl9.pdf.

License Information

Source files are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @Qfontawesome, released under CC

BY 4.0.

http://cidrdb.org/cidr2020/papers/p30-alonso-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p30-alonso-cidr20.pdf
http://www.vldb.org/conf/2007/papers/special/p3-chaudhuri.pdf
http://www.vldb.org/conf/2007/papers/special/p3-chaudhuri.pdf
https://static.usenix.org/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf
https://static.usenix.org/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf
https://static.usenix.org/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf
https://doi.org/10.1109/ICDE.2008.4497528
https://doi.org/10.1109/ICDE.2008.4497528
http://cidrdb.org/cidr2019/papers/p117-kraska-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p117-kraska-cidr19.pdf
https://gitlab.com/oer/misc
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Except where otherwise noted, the work “OLAP Optimization”, (©) 2018-
2022 Jens Lechtenbdorger, is published under the Creative Commons license CC
BY-SA 4.0.

https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Context
	Prerequisites
	Learning Objectives (see slides)

	Disk based data access
	Index structures
	Rules of thumb
	Self-Study Tasks
	Tentative Session Plan

