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1 Context

This session presents newer types of data management systems, namely NoSQL
systems and NewSQL database systems, which are frequently associated with
big data settings. Big data may be characterized by 5 Vs [GBR15], namely
large Volume, high Velocity (speed of data production and processing), diverse
Variety (data from different sources may be heterogeneous; structured, semi-
structured, or unstructured), unknown Veracity (raising concerns related to
data quality and trust), potential Value (e.g., as basis for business intelligence
or analytics). NoSQL and NewSQL address those Vs differently: Both promise
scalability, addressing Volume and Velocity. NoSQL systems come with flexible
data models, addressing Variety. NewSQL database systems perform ACID
transactions, addressing Veracity. Value is up for discussion.

This text is meant to introduce you to general concepts that are relevant in
videos in Learnweb (and beyond) and to point you to current research.

1.1 Prerequisites
e Explain notions of database system and ACID transaction (very brief re-
cap below).
1.2 Learning Objectives

e Apply Amdahl’s and Gustafson’s laws to reason about speedup under
parallelization.

e Explain the notions of consistency in database contexts and of eventual
consistency under quorum replication.

e Explain the intuition of the CAP Theorem and discuss its implications.

e Explain objectives and characteristics of “NoSQL” and “NewSQL” systems
in view of big data scenarios.

2 Background

2.1 Scalability

A system is scalable if it benefits “appropriately” from an increase in compute
resources. E.g., if resources are increased by a factor of 2, throughput should



be about twice as high for a system that scales linearly.

As previously mentioned in the context of query optimization, scaling of
computers comes in two major variants: scaling up (also called scaling vertically)
and scaling out (also called scaling horizontally or sharding). When scaling up
(see Figure 1), we improve resources of a single machine (e.g., we add more
RAM, more/faster CPU cores), while scaling out (see Figure 2) means to add
more machines and to distribute the load over those machines subsequently, for
example with horizontal fragmentation.
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Figure 1: Scaling up improves the performance of a single machine.
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Figure 2: Scaling out distributes load over a fleet of systems.

Scaling out is not limited by physical restrictions of any single machine and is
the usual approach in the context of big data. Indeed, [CP14] characterizes big
data as being “large enough to benefit significantly from parallel computation
across a fleet of systems, where the efficient orchestration of the computation is
itself a considerable challenge.”



2.2 Limits to Scalability

Amdahl’s law [Amd67] provides an upper bound for the speedup that can be
gained by parallelizing computations which (also) include a non-parallelizable
portion. More specifically, if some computation is parallelized to N machines
and involves a serial fraction s that cannot be parallelized, the speedup is limited
as follows (the time needed for s does not change, while the remainder, 1 — s,
is scaled down linearly with N):

1

Speedup = ————
T

In the following interactive GeoGebra graphic you see a plot of this speedup
(with N on the x-axis; the plot also includes a limit for that speedup and an
alternative speedup according to Gustafson’s law, both to be explained subse-
quently).

Interactive graphic missing in PDF export. Please go to
https://www.geogebra.org/graphing /xemgcrw2.

E.g., consider a computation of which 90% are parallelizable (i.e., s = 0.1),
to be executed on N = 10 machines. You might guess the speedup to be close
to 90% of 10, while you find only 5.3 given the above equation. For N = 100
and N = 1000 we obtain 9.2 and 9.9, respectively. Indeed, note that for N
approaching infinity the fraction 1]:,3 disappears; for s = 0.1, the speedup is
limited by 10. Suppose we scale the computation (e.g., in a cloud infrastructure
or on premise). When scaling from 10 to 100 machines, costs might increase by
a factor of 10, while the speedup not even increases by a factor of 2. Further
machines come with diminishing returns.

I was quite surprised when I first saw that law’s results.

Gustafson’s law [Gus88| can be interpreted as counter-argument to Am-
dahl’s law, where he starts from the observation that larger or scaled problem
instances are solved with better hardware. In contrast, Amdahl considers a
fized problem size when estimating speedup: Whereas Amdahl’s law asks to
what fraction one time unit of computation can be reduced with parallelism,
Gustafson’s law starts from one time unit under parallelism with N machines
and asks to how many time units of single-machine execution it would be exz-
panded with this computation (the serial part remains unchanged, while the
parallelized part, 1 — s, would need N times as long under single-machine exe-
cution):

Speedup = s+ (1 —s)N

Given s = 0.1 and N = 100 we now find a speedup of 90.1. Indeed, the
speedup now grows linearly in the number of machines.

(The difference in numbers results from the fact that s is based on the serial
execution for Amdahl’s law, while it is based on the parallelized execution for
Gustafson’s law, under the assumption that the serial portion does not depend
on problem size. Starting from the time for serial execution in Gustafson’s case,
namely s+ (1—s) N, its serial portion is not s but T E-g., if the “starting”
s for Gustafson’s law is 0.1, then the s for Amdahl’s law (for N = 100) would

. 0.1 ~
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Thus, from Amdahl’s perspective we are looking at a problem with negligible
serial part that benefits tremendously from parallelism. Indeed, the speedup
according to Amdahl’s law is m ~ 90.18, with rounding differences
leading to a deviation from the 90.1 seen above for Gustafson’s law.)

Apparently, the different perspectives of Amdahl’s and Gustafson’s laws lead
to dramatically different outcomes. If your goal is to speed up a given computa-
tion, Amdahl’s law is the appropriate one (and it implies that serial code should
be reduced as much as possible; for example, your implementation should not
serialize commutative operations such as deposit below). If your goal is to solve
larger problem instances where the serial portion does not depend on problem
size, Gustafson’s law is appropriate.

Beyond class topics, the Sun-Ni law [SN90; SC10] is based on a memory-
bounded speedup model and generalizes both other laws (but does not clarify
their differences regarding s).

2.3 Databases

“Database” is an overloaded term. It may refer to a collection of data (e.g., the
“European mortality database”), to software (e.g., “PostgreSQL: The world’s
most advanced open source database”), or to a system with hardware, software,
and data (frequently a distributed system involving lots of physical machines).
If we want to be more precise, we may refer to the software managing data as
database management system (DBMS), the data managed by that software as
database and the combination of both as database system.

Over the past decades, we have come to expect certain properties from
database systems (that distinguish them from, say, file systems), including:

e Declarative query languages (e.g., SQL for relational data, XQuery for
XML documents, SPARQL for RDF and graph-based data) allow us to
declare how query results should look like, while we do not need to specify
or program what operations to execute in what order to accumulate desired
results.

e Data independence shields applications and users from details of physical
data organization in terms of bits, bytes, and access paths. Instead, data
access is organized and expressed in terms of a logical schema, which
remains stable when underlying implementation or optimization aspects
change.

e Database transactions as sequences of database operations maintain a con-
sistent database state with ACID guarantees (the acronym ACID was
coined by Haerder and Reuter in [HR83|, building on work by Gray
[Gra81]):

— Atomicity: Either all operations of a transaction are executed or none
leaves any effect; recovery mechanisms ensure that effects of partial
executions (e.g., in case of failures) are undone.

— Consistency: Each transaction preserves integrity constraints.

— Isolation: Concurrency control mechanisms ensure that each trans-
action appears to have exclusive access to the database (i.e., race
conditions such as dirty reads and lost updates are avoided).
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— Durability: Effects of successfully executed transactions are stored
persistently and survive subsequent failures.

2.4 Consistency

The “C” for Consistency in ACID is not our focus here. Instead, serializabil-
ity [Pap79] is the classical yardstick for consistency in transaction processing
contexts (addressed by the “I” for Isolation in ACID). In essence, some concur-
rent execution (usually called schedule or history) of operations from different
transactions is serializable, if it is “equivalent” to some serial execution of the
same transactions. (As individual transactions preserve consistency (the “C”),
by induction their serial execution does so as well. Hence, histories that are
equivalent to serial ones are “fine”.)

A classical way to define “equivalence” is conflict-equivalence in the read-
write or page model of transactions (see [WV02] for details, also on other models;
TODO mention view serializabilty, NP-hard/complete?). Here, transactions
are sequences of read and write operations on non-overlapping objects/pages,
and we say that the pair (o1, 02) of operations from different transactions is
in conflict if (a) o; precedes oq, (b) they involve the same object, and (c)
at least one operation is a write operation. Two histories involving the same
transactions are conflict-equivalent if they contain the same conflict pairs. In
other words, conflicting operations need to be executed in the same order in
equivalent histories, which implies that their results are the same in equivalent
histories.

Note that serializable histories may only be equivalent to counter-intuitive
serial executions as the following history h (adapted from an example in [Pap79])
shows, which involves read (R) and write (W) operations from three transactions
(indicated by indices on operations) on objects x and y:

h = Ry [x] Wa[x] Wa[y] Wily]

Here, we have conflicting pairs (Rq[x], W2[x]) and (W3[y], W1[y]). The only
serial history with the same conflicts is hg:

hg = Ws[y] Ra[x] Wi[y] Wa(x]

Papadimitriou [Pap79] observed: “What is interesting is that in h transaction
2 has completed execution before transaction 3 has started executing, whereas
the order in hg has to be the reverse. This phenomenon is quite counterintuitive,
and it has been thought that perhaps the notion of correctness in transaction
systems has to be strengthened so as to exclude, besides histories that are not
serializable, also histories that present this kind of behavior.”

He then went on to define strict serializability where such transaction orders
must be respected. Later on, Herlihy and Wing [HW90] defined the notion of
linearizability, which formalizes a similar idea for operations on abstract data
types. In our context, linearizability is the formal notion of consistency used in
the famous CAP Theorem, which is frequently cited along with NoSQL systems.

As a side remark, for abstract data types, we can reason about commuta-
tivity of operations to define conflicts: Two operations conflict, if they are not
commutative. For example, a balance check operation and a deposit operation
on the same bank account are not commutative as the account’s balance differs
before and after the deposit operation. In contrast, two deposit operations on a,
bank account both change the account’s state (and would therefore be consid-
ered conflicting in the read-write model), but they are not in conflict as their
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order does not matter for the final balance. Hence, there is no need to serialize
the order of such commutative operations.

In the NoSQL context, eventual consistency is a popular relaxed version of
consistency. The intuitive understanding expressed in [BG13] is good enough
for us: “Informally, it guarantees that, if no additional updates are made to a
given data item, all reads to that item will eventually return the same value.”

As a pointer to recent research that foregoes serializability and linearizabil-
ity, I recommend Hellerstein and Alvaro [HA20], who review an approach based
on the so-called CALM theorem (for Consistency As Logical Monotonicity) to-
wards consistency without coordination. To appreciate that work, note first that
coordination implies serial computation in the sense of Amdahl’s law, which lim-
its scalability. Thus, not having to endure coordination is a good thing. Second,
the approach allows us to design computations for which eventual consistency is
actually safe. (The general idea is based on observing “consistent” overall out-
comes of local computations, similarly to the above commutativity argument
but based on monotonicity of computations.)

3 NoSQL

NoSQL is an umbrella term for a variety of systems that may or may not exhibit
the above database properties. Hence, the term “NoSQL data store” used in
the survey articles [Cat11] and [DCL18| seems more appropriate than “NoSQL
database”. (In the past, I talked about “NoSQL databases”, which you might
hear in videos; nowadays, I try to avoid that term.)

Usually, NoSQL is spelled out as “Not only SQL”, which is somewhat mis-
leading as several NoSQL systems are unrelated to SQL. Nevertheless, that
interpretation stresses the observation that SQL may not be important for all
types of applications.

The NoSQL movement arose around 2005-2009 where we saw several web-
scale companies running their home-grown data management systems instead
of established (relational) database systems. Google’s Bigtable [Cha+06] and
Amazon’s Dynamo [DeC+07] were seminal developments in the context of that
movement.

More generally, NoSQL systems advertise simplicity (instead of the com-
plexities of SQL), flexibility (free/libre and open source software with bind-
ings into usual programming languages, accommodating unstructured, semi-
structured, or evolving data), scaling out, and availability. Nowadays, NoSQL
subsumes a variety of data models (key-value, document, graph, and column-
family) for increased flexibility and focuses on scalability and availability,
while consistency guarantees are typically reduced (see [DCL18] for a survey
and https://hostingdata.co.uk /nosqgl-database/ for a catalog of more than 225
NoSQL systems as of October 2021).

From a conceptual perspective, the CAP Theorem (introduced as conjecture
in [Bre00]; formalized and proven as theorem in [GLO02]) expresses a trade-off
between Consistency and Availability in the case of network Partitions. The
definitions used for the theorem and its proof may not be what you need or
expect in your data management scenarios as argued in this blog post by Martin
Kleppmann.

Regardless of that critique, the trade-off expressed by the CAP Theorem
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between consistency and availability is real, is attributed to [RG77] (dating back
to 1977) in [DCL18], and should not be too surprising: If a network partition
does not allow different parts of the system to communicate with each other,
they cannot synchronize their states any longer. Thus, if different parts continue
to be available and to apply updates (e.g., from local clients), their states will
diverge, violating usual notions of consistency (such as linearizability, which is
used in the proof of the CAP theorem, while in a video I phrased consistency
as “all copies have the same value”). Alternatively, some parts could shut down
to avoid diverging states until the partition is resolved, violating availability.

Against this background, NoSQL systems frequently aim to improve avail-
ability by offering a relaxed notion of consistency, which deviates from the trans-
actional guarantees of older SQL systems as well as of newer NewSQL databases.

Note that consistency under failure situations is a complicate matter, and
lots of vendors promise more than their systems actually deliver. See the blog
posts by Kyle Kingsbury for failures discovered with the test library Jepsen,
which runs operations against distributed systems under controlled failure situ-
ations.

4 NewSQL

NewSQL (see [PA16] for a survey) can be perceived as counter-movement from
NoSQL back to the roots of relational database systems (prominently advocated
by Aslett and Stonebreaker in 2011).

In brief, NewSQL systems are database systems in the above sense, which
comes with two major strengths:

1. Declarative querying based on standards and data independence boost
developer productivity.

2. Business applications frequently require highly consistent data, as man-
aged with ACID transactions.

In addition, NewSQL database systems demonstrate that horizontal scala-
bility and high availability can be achieved for high-volume relational data with

SQL.

5 Self-study tasks

e Watch the provided videos and ask any questions you may have.

— The video on Partitioning and Replication ends with a sample sce-
nario. Convince yourself that the classification of queries and update
into single-partition and multi-partition is correct.

— Consider Quorum Replication with N=3.

x Suppose W=2 and R=1 where a read operation comes in after
a write operation took place. What cases can you distinguish?
How does the situation change for R=27

* Suppose W=2 and R=2 with Vector Clocks. How can the coor-
dinator choose the most recent version for a read operation?
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- (If you do not know vector clocks yet, maybe checkout this
introduction to time in distributed systems as taught in our
Bachelor’s program.)

— What trade-off is expressed by the CAP Theorem?
— What techniques does F1 employ to offer availability?

(Again, some thoughts are available separately.)

6 Tentative Session Plan

1. Questions on previous topics

2. Interactive review of self-study tasks

3. Discuss in view of the CAP Theorem: “On the Web, strong consistency is
not possible for highly available systems. [...] So, eventual consistency is
the best we can go for.”

4. Questions on Exercise Sheet 2.
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