Regular Expressions *

Jens Lechtenborger

Winter Term 2023/2024

Contents

1 Introduction 1
2 Background 3
3 Regular Expressions 5
4 The Real World 6
5 Learning Objectives 8
1 Introduction

Welcome to a short tour of regular expressions.

Regular expressions fall into the wider topic of formal languages.
If you know the Chomsky hierarchy of formal languages or if you know how compilers for

programming languages work, not much of the following may be new to you.

In any case, this introduction is meant to be self-contained, so not much prior knowledge

should be necessary.

1.1 Regular Expressions

e Regular expressions (regexps) are formalism to define languages (permis-
sible strings/words)

e Sample regexps use cases

— Validate whether string conforms to format/pattern

% Special case: Define tokens in programming languages

Find strings of specific pattern in text

Replace strings of specific pattern in text

Split/elementize strings

*This PDF document is an inferior version of an OER in HTML format; free/libre Org

mode source repository.

https://oer.gitlab.io/misc/Regular-Expressions.html
https://gitlab.com/oer/misc
https://gitlab.com/oer/misc

Regular expressions are a formalism to define formal languages.

For our purposes it is sufficient to understand a formal language as a set of strings.

So, some strings are part of a given language while others are not.

The notion of string here should be interpreted quite broadly.

For example, a string may or may not represent a syntactically valid program in the
language Java.

The purpose of regular expressions is narrower, though.

Instead of entire programs, here the focus is on individual parts, sometimes called tokens.

For example, we can use regular expressions to define the set of valid variable names in a
programming language or the set of valid telephone numbers in a data integration setting.

Further use cases are shown on the slide here.

1.2 Regular Expression as Tool
e Versatile tool

— In most programming languages
— In reasonable text editors

— In UNIX command line tools, e.g., grep, sed

In data profiling tools (patterns for phone numbers, e-mail addresses,
URIs, ...)

— In data integration tools (matching of various formats to standardized
representation)

In computing, regular expressions are widely spread.

Functionality for search and replace based on regular expressions exists in most program-
ming languages, in better text editors, and in special-purpose tools.

In our class context, you find regular expressions in data profiling and data integration
tools, which is why you may want to learn more about them.

1.3 Regexp Facts

o Regexp matching can be implemented via finite-state automata

— Some implementations such as Rust’s regex guarantee linear-time
behavior

— Others may come with backtracking and exponential run-time, break-
ing the Internet

e Regular expressions and (deterministic or non-deterministic) finite state
automata specify precisely the same languages, namely the regular lan-
guages

— There is no regexp to match correctly nested (arbitrarily deeply)
parenthesized expressions

x (Eg,“0+2*((B*...)...)...)...)"
* Reason: finite memory!
* Regular languages vs context-free languages, Chomsky hierarchy

This slides mentions two facts about regular expressions, for which actually formal proofs
exist.

First, every regular expression can be implemented via a finite-state automaton, which is a
particular machine model for computation where only a finite amount of memory is available.

https://docs.rs/regex/1.3.7/regex/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://en.wikipedia.org/wiki/Chomsky_hierarchy

Second, the expressive power of regular expressions is limited as far as formal languages
are concerned.

A famous example of a language that cannot be defined via a regular expression is that
of properly nested parentheses.

Different classes of languages can be arranged in the so-called Chomsky hierarchy, about
which you can learn more at Wikipedia or in textbooks on theoretical computer science or on
compiler construction.

Those classes of languages include regular languages, defined by regular expressions,
context-free languages, which include parenthesized expressions and are fundamental in the
definition of programming languages, and more.

2 Background

2.1 Alphabets, Words, and Languages
e Alphabet = finite set of symbols, e.g.:

Latin characters

— Digits

— ASCII, UTF-8

— Keyboard alphabet

e Word (over alphabet A) = String (over alphabet A) = finite sequence of
symbols (over alphabet A)

— ¢ denotes the empty word (no symbols)

e Language (over alphabet A) = set of words (over alphabet A)

To define a formal language, we start from an alphabet, which is just a finite set of
symbols.

Typical examples of alphabets are shown here.

Given an alphabet, a word is a finite sequence of symbols.

The empty sequence or word is usually represented with epsilon.

This notion of word is somewhat counter-intuitive as a Java program can be perceived as
a single word (while is consists of words at the same time).

Given an alphabet, a language is a set of words, for example the set of syntactically correct
Java programs or the set of valid telephone numbers.

2.2 Operations on Words

e If v and w are words, then vw is a word, the concatenation of v and w
— E.g., v = data, w = integration. Then vw = dataintegration

— ¢ is the neutral element w.r.t. concatenation, i.e., ew = we = w for
all words w

e If wis a word and k a non-negative integer then the power w¥ is defined

as follows:
—wl =
—wk=wklwfork >0
e Eg.;

— datal! = data®data = edata = data

— data? = data'data = datadata

A typical operation on words is the concatenation, which just means writing words one
after the other, without any intermediate symbol.

By definition, concatenating a word w with the empty word, epsilon, does not change w.

Repeated concatenation is represented with powers and defined recursively as shown here.

Raising to the power zero always results in epsilon, while for a word w the result of w to
the k is defined as w to the k minus one, concatenated with w.

Examples for that definition are shown here.

2.2.1 Quiz on Words
2.3 Operations on Languages
2.3.1 Let L and M be languages

e L, U M is usual set union

e LM = {vw|veLandw €M } (concatenation)

e " = LOUL'UL?UL? U... (Kleene star/closure)
— Where LY = { ¢ } and L' = L¥L (k > 0)
— Zero or more concatenations of L with itself
e LT = L'UL?UL?U... (positive closure)
— One or more concatenations of L with itself
For the definition of regular expressions, we need certain operations on languages.
First, as languages are sets of words, we can compute their set union.
Second, the concatenation of two languages results in the set of words that arise from
concatenations of pairs of words from the original languages.
Third, the so-called Kleene star, denoted by L star, represents zero or more concatenations

of some language.
Finally, L. plus denotes one or more concatenations of L.

2.3.2 Language Operation Examples
e Ly ={e€ ab,abb }, Ly = { b, ba}
o Iy I, =7
o Iy =7
o L3 =7
o Ly3 =7

This slide shows two languages and asks you to apply some operations.

2.3.3 Quiz on Language Operations
3 Regular Expressions

3.1 Regexp Definition

e Regexps and their languages (over alphabet A) defined recursively as
follows

1. € is a regexp with L(e) = {¢}
2. ais a regexp with L(a) = {a} for every symbol a € A
3. Let r and s be regexps with languages L(r) and L(s).
— (r)|(s) is a regexp with L((r)|(s)) = L(r) U L(s)
* Alternative
(r)(s) is a regexp with L((r)(s)) = L(r) L(s)
* Concatenation
— (r)" is a regexp with L((r)") = (L(x))"
* Kleene star
— (r) is a regexp with L((r)) = L(r)

We are now ready to define regular expressions, which in turn define languages.

The empty word is a regular expression, whose language contains nothing but the empty
word.

Also, each individual symbol is a regular expression, whose language contains nothing but
the symbol as a word.

Recursively, four rules allow to construct more complex regular expressions from given
regular expressions.

First, the vertical bar denotes an alternative, so the resulting language is the union of the
original languages.

Second, the concatenation of regular expressions is again a regular expression, whose
language is the concatenation of the original languages.

Third, the Kleene star can be applied to a regular expression, which results in the language
obtained by applying the Kleene star to the original language.

Fourth, parentheses can be applied without changing the defined language.

3.2 Parentheses

e By definition, regexps contain many parentheses
e Reduction of amount of parentheses via precedence rules for operators

— Kleene star > Concatenation > Alternative
— Eg: ((2)(@))|(((a)(b))"(¢)) = aal(ab)”c

Here you see typical conventions to avoid parentheses based on precedence rules.

3.3 Regexp Matching
e Regexp E matches word w if w € L(E)
e E; — data
— L(E,) = { data }

— E; matches data (but not integration)
e E, = (data)|(integration) = datalintegration

— L(E») = { data, integration }

— E; matches data and integration (but not dataintegration)
o B3 = (Eo)*

— L(E;) =7

A regular expression can be understood as pattern, which is matched against strings.

Precisely, a word matches regular expression E if the word is an element of the language
defined by E.

You see two examples here and are instructed to think about a third one.

3.3.1 Quiz on RegExp Language
3.4 Major Regexp Shorthands

e E regular expression, n < m integers

— E+ = EE* (at least one E)

— E? = Ele (E is optional)

— E{n,m} = E*|E*"![...|E™ (n to m repetitions of E)
e Alphabet A = { al, a2, ..., an }

— . = (al|a2|...]an) (dots represents any symbol of A)
— [airaiz. . . aik] = (air|aiz]. . . |ai) (set of symbols)

— ["aj1aie. . . aj] (complemented set; all symbols except { aj1, a2, ...

aik })
e In practice, symbols of alphabets are ordered (e.g., a < ¢ < z; 1 < 9)
—a,a” € A, a’ < a” Then [a-a"] = a’|...]a” (range of symbols)
* [0-9] = 0]1]2|3]4/5/6|7|8|9

Various implementations of regular expressions offer abbreviations, some of which are
listed here.

4 The Real World

4.1 Regexps in Practice
e Various Implementations
— Wikipedia
— In particular, PCRE (Perl Compatible Regular Expressions)

* Used in many tools and programming languages
* All of the above: Concatenation, alternative (|), closure (*), pos-
itive closure (+), optional (7), sets (]...]), repetition ({n,m})

https://en.wikipedia.org/wiki/Regular_expression#Syntax

* And more: Matching at beginning/end of word/line (* and $),
character classes (predefined expressions for words, numbers,
whitespace, ...), look-ahead, look-behind, grouping and back-
reference (parentheses and numbers) ...

— E.g.
* data matches data integration and MIS and data warehousing

x “data matches data integration but not MIS and data warehous-
ing; data$ matches neither

\d matches single digit, which is [0-9], which is (0[1]...]9)
[1-9]\d* matches positive integers without leading zeros

*

*

*

[hc]?at matches hat, cat, and at.

Different implementations provide different shorthands, some of which are recognized as
standards.

Here, you see initial pointers.

You may want to try out the given examples, for which the next slide contains suggestions.

4.2 Learning Regexps
e Lots of free software tools to build regexps and verify their effects
e Some examples

— https://regexr.com/
— M-x regexp-builder in GNU Emacs
— Next slide in Python

x Live code execution, editable

- Based on in-browser Python implementation (skulpt), not
complete

Try out Jupyter notebooks (or Emacs IPython Notebook)

x Web application for documents with live code, visualizations,
documentation

- Support for lots of languages
- Conversations with and about data

Different resources are available to learn more about regular expressions.
I recommend that you try out some patterns in tools of your choice.

4.2.1 Regexps in Python

import re # See https://docs.python.org/3/library/re.html

ml = re.search(""Data", "Data Integration")

print ("Match: ’{}’".format(ml.group(0))) # Group O is entire match
m2 = re.search("~Data", "MIS and Data Warehousing")

if m2 is None:

print ("No match.")

This Python code searches for the pattern “Data”, but only at the beginning of strings as
the regular expression starts with the hat symbol.

Note that this presentation embeds a software called klipse, to enable live code execution.
Thus, you can click into the code, edit it, and see results in the output section.

https://regexr.com/
https://www.gnu.org/software/emacs/
http://skulpt.org/
https://jupyter.org/
https://github.com/millejoh/emacs-ipython-notebook
https://github.com/viebel/klipse

4.3 Regexp Example: E-Mail
e See https://www.regular-expressions.info/email.html
o ~[A-Z0-9._%+-1+@[A-Z0-9.-1+\.[A-Z1{2,4}$
— To be used with case-insensitive matching
e Design decisions

— Match most real addresses but not all

* Only ASCII allowed here
— Also allow some invalid strings

* Multiple subsequent dots are allowed
— Don’t care about domain names

x Could explicitly specify alternatives for top-level domains (TLDs),
e.g., .museum missing but .asfg allowed

Here you see a sample regular expression to match e-mail addresses, for variants of which
you find discussions on the mentioned web page.
I suggest that you think about the regular expression and read the web page.

4.4 Patterns with Regexps

e Regexp for telephone numbers?

— One expression matching both examples:
* +49-251-83-38150
* +49 251 83 38151
e Different regexp for alternative format?
— (0251) (83) 38158
Please think about regular expressions for telephone numbers.
Sometimes different parts are separated by spaces, sometimes by hyphens, sometimes by
parentheses.
T suggest that you construct regular expressions for the examples shown here, which we
will revisit in class. Also, discuss the matching accuracy similarly to the discussion for e-mail
addresses mentioned on the previous slides.

Note that the plus sign as well as parentheses have a special meaning, which implies that
you need to escape them. Please figure out how to do so on your own.

5 Learning Objectives

e Explain what regexps are and where they are useful
e Give examples for what regexps can and cannot do

— In general

— Matching accuracy
e Read and write regexps for sample use cases

— Enumerate their languages

https://www.regular-expressions.info/email.html

License Information

Source files are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

Except where otherwise noted, the work “Regular Expressions”, (C) 2019-
2021, 2023-2024 Jens Lechtenborger, is published under the Creative Commons
license CC BY-SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are mot licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., “Creative Commons” itself) remain with their respective holders.

https://gitlab.com/oer/misc
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Background
	Regular Expressions
	The Real World
	Learning Objectives

