
Docker Introduction
*

Jens Lechtenbörger

Data Science Winter School 2023

Contents

Introduction

Motivation (1/2)

� Virtualization software provides (virtual) hardware interface

Figure 1: Layering with virtualization

� Interface implemented by Hypervisor/VMM

* VMM runs on (usual) host OS, manages real hardware

� Virtual hardware can have arbitrary features

* Largely independent of real hardware, say, ten network cards

� On top of virtual hardware, install operating systems (guests) and
other software to create virtual machines (VMs)

* Share resources of powerful server machine among several VMs

· E.g., your �own� server as VM in a project seminar

* Use VM as blueprint to share reliable environment with others

*This PDF document is an inferior version of an OER in HTML format; free/libre Org
mode source repository.

1

https://oer.gitlab.io/misc/Docker.html
https://gitlab.com/oer/misc
https://gitlab.com/oer/misc


· Or to �re up lots of identical VMs for compute-intensive
tasks with cloud computing

This and the subsequent slide are intended as quick overview for virtualization and con-
tainerization. Terms used here as well as the layered �gure are revisited later on.

Motivation (2/2)

� Containerization (e.g., with Docker) as lightweight variant of virtualization

Figure 2: Layering with containerization

� Containerization provides OS interface

� No virtual hardware, but shared OS kernel

� Use containers to execute software (versions) in controlled way

* Think of larger application that uses external libraries

* Libraries evolve, may introduce incompatible changes over time

· Speci�c version of application depends on speci�c versions of
libraries

· Container bundles �correct� versions

Learning Objectives

� Explain de�nitions of virtual machine and virtual machine monitor

� Explain and contrast virtualization and containerization

� Including isolation

� Including layering

� Use Docker for simple tasks

� E.g., start Web/Solid server with static �les

� Interpret and modify simple docker �les

2

https://en.wikipedia.org/wiki/Cloud_computing
https://oer.gitlab.io/OS/Operating-Systems-Introduction.html#slide-kernel-variants


Core Questions

� What do virtualization and containerization mean?

� How to deploy potentially complex software in a reproducible fashion?

Virtualization

History (1/2)

� Virtualization is an old concept

� IBM mainframes, 1960s

� Frequently cited survey article by Goldberg, 1974: [Gol74]

� Original motivation

* Resources of expensive mainframes better utilized with multi-
ple VMs

* Ability to run di�erent OS versions in parallel, backwards com-
patibility

� 1980s, 1990s

� Modern multitasking OSs on cheap hardware

* Cheap hardware did not o�er virtualization support

* Little use of virtualization

History (2/2)

� Ca. 2005

� PC success becomes problematic

* How to limit energy usage and management overhead of
�eets of PCs in data centers?

* One answer: Use virtualization for server consolidation

· Turn independent servers into VMs, then allocate them to
single server

· Servers often with low resource utilization (e.g., CPU usage
between 10% and 50% at Google in 2007, [BH07])

· Consolidated server with improved resource utilization

* Additional answer: Virtualization reduces management, testing,
and deployment overhead, see [Vog08] for Amazon

� Virtualization as enabler for cloud computing

� [SPF+07]: Containers for lightweight virtualization

� [CIM+19; KHA+23]: Serverless computing

3

https://en.wikipedia.org/wiki/Cloud_computing


Intuition and Examples

� Virtualization: Creation of virtual/abstract version of something

� Virtual memory, recall OS concepts

* Not our focus

� Network, e.g., overlay networks, software-de�ned networking

* Not our focus

� Execution environment (e.g., Java, Dotnet)

� Hardware/system: virtual machine (VM)

� Typical meaning: virtual machine (VM)

� Virtual hardware

* Several OSs share same underlying hardware

� VMs isolated from each other

De�nitions

� Cited from [PG74] (bold face added)

� �A virtual machine is taken to be an e�cient, isolated duplicate of
the real machine.�

� Made precise with Virtual Machine Monitor (VMM)

* �First, the VMM provides an environment for programs which
is essentially identical with the original machine; second, pro-
grams run in this environment show at worst only minor de-
creases in speed; and last, the VMM is in complete control
of system resources.�

· Essentially identical: Programs with same results (as long
as they do not ask for hardware speci�cs), maybe di�erent
timing

· Speed: Most instructions executed directly by CPU with no
VMM intervention

· Control: (1) Virtualized programs restricted to resources al-
located by VMM, (2) VMM can regain control over allocated
resources

* �A virtual machine is the environment created by the virtual
machine monitor.�

This de�nition is made precise with the notion of the virtual machine monitor:
�First, the VMM provides an environment for programs which is essentially identical with

the original machine; second, programs run in this environment show at worst only minor
decreases in speed; and last, the VMM is in complete control of system resources.�

Thus, a VM is an environment for programs, which is managed by a VMM, which in turn
satis�es certain properties. Let us look at these properties in more detail:

The virtualized environment is considered to be essentially identical, if programs produce
the same results as they would on real hardware (as long as they do not ask for hardware
speci�cs). They may show di�erences in timing, though.

The virtualized environment should not reduce the speed of program too much. More
precisely, most instructions should be executed directly by the CPU.

4

https://oer.gitlab.io/OS/Operating-Systems-Memory-I.html
https://en.wikipedia.org/wiki/Overlay_network
https://en.wikipedia.org/wiki/Software-defined_networking


In fact, we expect CPU bound computations to run without VMM interventions at native
speed. However, access to virtualized hardware requires VMM intervention, which comes with
additional work and overhead.

The VMM should be in control of resource allocations. Thus, virtualized programs must
be restricted to resources allocated by the VMM, and the VMM must be able to regain control
over allocated resources.

Given this understanding of a VMM, the following alternative de�nition for a VM emerges:
�A virtual machine is the environment created by the virtual machine monitor.�

Isolation

� Isolation of VMs: Illusion of exclusive hardware use (despite sharing be-
tween VMs)

� Related to �isolated duplicate� and �complete control� of [PG74]

� Sub-types (see [SPF+07; FFR+15])

� Resource isolation: Fair allocation and scheduling

* Reservation (e.g., number of CPU cores and amount of RAM)
vs best-e�ort

� Fault isolation: Buggy component should not a�ect others

� Security isolation

* Con�guration independence (global names/settings do not con-
�ict)

· Applications with con�icting requirements for system-wide
con�guration

· E.g., port 80 for Web servers, each application with own
version of shared libraries

* Safety (no access between VMs/containers)

* Beware! Lots of security issues in practice

· E.g., hypervisor privilege escalation and cross-VM side chan-
nel attacks

Layering with Virtualization

Figure 3: Layering with virtualization

5

https://www.startpage.com/do/search?q=hypervisor+privilege+escalation
https://www.startpage.com/do/search?q=cross-vm+side+channel+attack
https://www.startpage.com/do/search?q=cross-vm+side+channel+attack


Layering Explained

� Hypervisor or virtual machine manager (VMM) with full access to physical
hardware

� Most privileged code

* Details depend on CPU hardware

· E.g., kernel mode (CPU ring 0) or additional �root mode�
(e.g., ring -1) with more privileges than kernel mode

� Create abstract versions of hardware, to be used by guest OSs

* VM = Guest OS running on abstract hardware

* Host = Environment in which the VMM runs

· Host software may be full OS or specialized

� Guest OS is de-privileged

� No longer with full hardware access, e.g., CPU ring 1

� Privileged/sensitive instructions lead to hypervisor

* Executed, translated, or emulated accordingly

� Each VM can run di�erent OS

� VM backups/snaphots simplify management, placement, parallelization

� Sharing among applications in di�erent VMs restricted, requires net-
working

� (Neither shared memory nor �le nor pipes)

� Creation of more VMs with high overhead

� Each with full OS, own portion of underlying hardware

Review Question

� The Java VM was mentioned as variant of virtualization. Discuss whether
it satis�es the conditions for virtualization as de�ned in 1974.

Containerization

Basics

� Motivation: Trade isolation for e�ciency (see [SPF+07])

� Main idea of containerization: Share kernel among containers

* (Instead of separate OS per VM)

� Mechanisms

� Add container ID to each process, add new access control checks to
system calls

6

https://oer.gitlab.io/OS/Operating-Systems-Interrupts.html#slide-kernel-mode
https://oer.gitlab.io/OS/Operating-Systems-Introduction.html#slide-system-calls


� In case of Linux kernel

* Kernel namespaces

· Limit what is visible inside container

* Control groups (cgroups)

· Limit resource usage

* Copy-on-write, e.g., UnionFS

· New container without copying all �les, localized changes

Layering with Containerization

Figure 4: Layering with containerization

Selected Technologies

� Docker

Figure 5: �Docker logo� under Docker Brand Guidelines; from Docker

� Image describes OS/application environment: What software/con�guration?

* Registries publish images

* Docker�les are build recipes for images in simple text format

� Container is process (set), created from image (image is template
for container)

� Kubernetes

Figure 6: �Kubernetes logo� under Kubernetes Branding Guidelines; from
GitHub

7

https://en.wikipedia.org/wiki/Linux_namespaces
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/UnionFS
https://www.docker.com/why-docker
https://www.docker.com/brand-guidelines
https://www.docker.com/sites/default/files/legal/docker_logos_2018.zip
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://github.com/kubernetes/kubernetes/blob/master/logo/usage_guidelines.md
https://raw.githubusercontent.com/kubernetes/kubernetes/master/logo/logo_with_border.png


� Cluster manager for Docker

* Pod = group of containers sharing resources, unit of deployment

* Pods can be replicated (copied) for scalability

* Integrated load-balancer

On Images

� With VMs, you could install software as in any other OS

� Getting messy over time

� With Docker, images are de�ned via Docker�les

� Explicitly listing necessary pieces and dependencies

� Enforcing order and reproducibility

� Sample docker�le (used in the past to generate reveal.js presentations
and PDF from org �les):

FROM ubuntu

LABEL maintainer="Jens Lechtenbörger"

RUN apt-get update && apt-get --no-install-recommends install -y \

ca-certificates emacs git \

texlive-bibtex-extra texlive-fonts-recommended texlive-generic-recommended \

texlive-latex-base texlive-latex-extra texlive-latex-recommended

COPY manage-packages.el /tmp/

Review Question

� Which conditions for virtualization as de�ned in 1974 does Docker satisfy?

Docker

Docker Installation

� Community Edition of Docker available for di�erent OSs

� See here for installation links

� Install on one of your machines, ideally on one that you can bring to (or
access in) class

� Your installation may come with a graphical user interface (GUI),
which you do not need

* Some students perceive the GUI to be confusing

* Use command line instead to enter commands shown subsequently
(any terminal should work, maybe try Bash)

8

https://gitlab.com/oer/docker/blob/master/emacs-tex/Dockerfile
https://docs.docker.com/get-docker/
https://oer.gitlab.io/OS/Operating-Systems-Introduction.html#slide-bash-access


First Steps

� Run hello-world, read output

� docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

[...]

� List your images and containers

� docker image ls

� docker container ls -all

* Help is available, e.g.:

· docker container --help

· docker container ls --help

� Maybe delete image and container

� docker rmi -f hello-world

A Web Server

� Run nginx

� docker run -p 8080:80 nginx

* -p: Web server listens on port 80 in container; bind to port 8080
on host

· Visit local server (see subsequent slide for Docker Toolbox
under Windows)

* Maybe add option --name my-nginx: Assign name to container
for subsequent use

· E.g., docker stop/start/logs/rm my-nginx

� Serve own HTML �les

� Add option -v in above docker run ... (before nginx)

* Mount (make available) directory from host in container

· E.g.: -v /host-directory/with/html-files:/usr/share/nginx/html

· /usr/share/nginx/html is where nginx expects HTML �les,
in particular index.html

· Thus, your HTML �les replace default ones of nginx

Selected Errors

� Error message: name in use already

� You cannot use the same name multiple times with docker run

--name ...

� Instead: docker start my-nginx

9

https://en.wikipedia.org/wiki/Nginx
http://localhost:8080


� Error message: port is allocated already

� You cannot use option -p with same port in several docker run

invocations

* Other container still running, stop �rst

· docker ps: Note ID or name

· docker stop <ID-or-name>

· docker run ...

* (Or some other process uses that port. Kill process or choose
di�erent port.)

On Option -v

� Say, you start nginx with option -v but your �les do not appear

� docker inspect <name-or-id-of-container>

* Check output for binds, telling you what is mapped to /usr/share/nginx/html

· May not meet your expectations

� Are you on Windows?

* Try -v C:\Users\... with Powershell

* Try -v C:\\Users/... with Bash

* Try -v /mnt/c/Users/... with WSL terminal

Docker Toolbox under Windows

� (I do not recommend this in any way. Switch to GNU/Linux.)

� Docker Toolbox installs a virtual machine, in which Docker runs

� Initial output informs about

* IP address of VM, e.g., 192.168.99.100

· Visit port 8080 on 192.168.99.100

* File system path

· /c/Program Files/Docker Toolbox

� Paths under C:\Users can be mounted by default

* E.g., docker run -p 8080:80 -v /c/Users/<your-name>/<folder-with-index.html>:/usr/share/nginx/html

nginx

· Maybe you need double slashes

Conclusions

Summary

� Virtual virtual machines are e�cient, isolated duplicates of the real
machine

� Containers are running processes, de�ned by images

10

https://www.getgnulinux.org/en/switch_to_linux/
http://192.168.99.100:8080
https://stackoverflow.com/questions/33312662/docker-toolbox-mount-file-on-windows


� Containers on one host share same OS kernel

� Virtual machines and containers

� can be contrasted in terms of their layering approaches

� allow to deploy software in well-de�ned environments

Outlook

� Containerization (in combination with version control such as o�ered by
Git) is enabler of DevOps

� DevOps = Combination of Development and Operations, see [JbA+16;
WFW+19]

* Bridge gaps between teams and responsibilities

* Aiming for rapid software release cycles with high degree of au-
tomation and stability

� Trend in software engineering

* Communication and collaboration, continuous integration (CI)
and continuous deployment (CD)

* Approach based on Git also called GitOps, see [Lim18]

· Self-service IT with proposals in pull requests (PRs)

· Infrastructure as Code (IaC)

Bibliography

License Information

Source �les are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

Except where otherwise noted, the work �Docker Introduction�, © 2018-
2021, 2023, 2025 Jens Lechtenbörger, is published under the Creative Commons
license CC BY-SA 4.0.

11

https://gitlab.com/oer/misc
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

