
Docker Introduction
*

Jens Lechtenbörger

Data Science Winter School 2023

Contents

Introduction

Motivation (1/2)

� Virtualization software provides (virtual) hardware interface

Figure 1: Layering with virtualization

� Interface implemented by Hypervisor/VMM

* VMM runs on (usual) host OS, manages real hardware

� Virtual hardware can have arbitrary features

* Largely independent of real hardware, say, ten network cards

� On top of virtual hardware, install operating systems (guests) and
other software to create virtual machines (VMs)

* Share resources of powerful server machine among several VMs

· E.g., your �own� server as VM in a project seminar

* Use VM as blueprint to share reliable environment with others

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://oer.gitlab.io/misc/Docker.html
https://gitlab.com/oer/misc
https://gitlab.com/oer/misc


· Or to �re up lots of identical VMs for compute-intensive
tasks with cloud computing

This and the subsequent slide are intended as quick overview for virtualization and con-
tainerization. Terms used here as well as the layered �gure are revisited later on.

Motivation (2/2)

� Containerization (e.g., with Docker) as lightweight variant of virtualization

Figure 2: Layering with containerization

� Containerization provides OS interface

� No virtual hardware, but shared OS kernel

� Use containers to execute software (versions) in controlled way

* Think of larger application that uses external libraries

* Libraries evolve, may introduce incompatible changes over time

· Speci�c version of application depends on speci�c versions of
libraries

· Container bundles �correct� versions

Learning Objectives

� Explain de�nitions of virtual machine and virtual machine monitor

� Explain and contrast virtualization and containerization

� Including isolation

� Including layering

� Use Docker for simple tasks

� E.g., start Web/Solid server with static �les

� Interpret and modify simple docker �les

2

https://en.wikipedia.org/wiki/Cloud_computing
https://oer.gitlab.io/OS/Operating-Systems-Introduction.html#slide-kernel-variants


Core Questions

� What do virtualization and containerization mean?

� How to deploy potentially complex software in a reproducible fashion?

Virtualization

History (1/2)

� Virtualization is an old concept

� IBM mainframes, 1960s

� Frequently cited survey article by Goldberg, 1974: [Gol74]

� Original motivation

* Resources of expensive mainframes better utilized with multi-
ple VMs

* Ability to run di�erent OS versions in parallel, backwards com-
patibility

� 1980s, 1990s

� Modern multitasking OSs on cheap hardware

* Cheap hardware did not o�er virtualization support

* Little use of virtualization

History (2/2)

� Ca. 2005

� PC success becomes problematic

* How to limit energy usage and management overhead of
�eets of PCs in data centers?

* One answer: Use virtualization for server consolidation

· Turn independent servers into VMs, then allocate them to
single server

· Servers often with low resource utilization (e.g., CPU usage
between 10% and 50% at Google in 2007, [BH07])

· Consolidated server with improved resource utilization

* Additional answer: Virtualization reduces management, testing,
and deployment overhead, see [Vog08] for Amazon

� Virtualization as enabler for cloud computing

� [SPF+07]: Containers for lightweight virtualization

� [CIM+19; KHA+23]: Serverless computing

3

https://en.wikipedia.org/wiki/Cloud_computing


Intuition and Examples

� Virtualization: Creation of virtual/abstract version of something

� Virtual memory, recall OS concepts

* Not our focus

� Network, e.g., overlay networks, software-de�ned networking

* Not our focus

� Execution environment (e.g., Java, Dotnet)

� Hardware/system: virtual machine (VM)

� Typical meaning: virtual machine (VM)

� Virtual hardware

* Several OSs share same underlying hardware

� VMs isolated from each other

De�nitions

� Cited from [PG74] (bold face added)

� �A virtual machine is taken to be an e�cient, isolated duplicate of
the real machine.�

� Made precise with Virtual Machine Monitor (VMM)

* �First, the VMM provides an environment for programs which
is essentially identical with the original machine; second, pro-
grams run in this environment show at worst only minor de-
creases in speed; and last, the VMM is in complete control
of system resources.�

· Essentially identical: Programs with same results (as long
as they do not ask for hardware speci�cs), maybe di�erent
timing

· Speed: Most instructions executed directly by CPU with no
VMM intervention

· Control: (1) Virtualized programs restricted to resources al-
located by VMM, (2) VMM can regain control over allocated
resources

* �A virtual machine is the environment created by the virtual
machine monitor.�

TODO Explain this.

Isolation

� Isolation of VMs: Illusion of exclusive hardware use (despite sharing be-
tween VMs)

� Related to �isolated duplicate� and �complete control� of [PG74]

� Sub-types (see [SPF+07; FFR+15])

4

https://oer.gitlab.io/OS/Operating-Systems-Memory-I.html
https://en.wikipedia.org/wiki/Overlay_network
https://en.wikipedia.org/wiki/Software-defined_networking


� Resource isolation: Fair allocation and scheduling

* Reservation (e.g., number of CPU cores and amount of RAM)
vs best-e�ort

� Fault isolation: Buggy component should not a�ect others

� Security isolation

* Con�guration independence (global names/settings do not con-
�ict)

· Applications with con�icting requirements for system-wide
con�guration

· E.g., port 80 for Web servers, each application with own
version of shared libraries

* Safety (no access between VMs/containers)

* Beware! Lots of security issues in practice

· E.g., hypervisor privilege escalation and cross-VM side chan-
nel attacks

Layering with Virtualization

Figure 3: Layering with virtualization

Layering Explained

� Hypervisor or virtual machine manager (VMM) with full access to physical
hardware

� Most privileged code

* Details depend on CPU hardware

· E.g., kernel mode (CPU ring 0) or additional �root mode�
(e.g., ring -1) with more privileges than kernel mode

� Create abstract versions of hardware, to be used by guest OSs

* VM = Guest OS running on abstract hardware

* Host = Environment in which the VMM runs

· Host software may be full OS or specialized

� Guest OS is de-privileged

5

https://www.startpage.com/do/search?q=hypervisor+privilege+escalation
https://www.startpage.com/do/search?q=cross-vm+side+channel+attack
https://www.startpage.com/do/search?q=cross-vm+side+channel+attack
https://oer.gitlab.io/OS/Operating-Systems-Interrupts.html#slide-kernel-mode


� No longer with full hardware access, e.g., CPU ring 1

� Privileged/sensitive instructions lead to hypervisor

* Executed, translated, or emulated accordingly

� Each VM can run di�erent OS

� VM backups/snaphots simplify management, placement, parallelization

� Sharing among applications in di�erent VMs restricted, requires net-
working

� (Neither shared memory nor �le nor pipes)

� Creation of more VMs with high overhead

� Each with full OS, own portion of underlying hardware

Review Question

� The Java VM was mentioned as variant of virtualization. Discuss whether
it satis�es the conditions for virtualization as de�ned in 1974.

Containerization

Basics

� Motivation: Trade isolation for e�ciency (see [SPF+07])

� Main idea of containerization: Share kernel among containers

* (Instead of separate OS per VM)

� Mechanisms

� Add container ID to each process, add new access control checks to
system calls

� In case of Linux kernel

* Kernel namespaces

· Limit what is visible inside container

* Control groups (cgroups)

· Limit resource usage

* Copy-on-write, e.g., UnionFS

· New container without copying all �les, localized changes

6

https://oer.gitlab.io/OS/Operating-Systems-Introduction.html#slide-system-calls
https://en.wikipedia.org/wiki/Linux_namespaces
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/UnionFS


Layering with Containerization

Figure 4: Layering with containerization

Selected Technologies

� Docker

Figure 5: �Docker logo� under Docker Brand Guidelines; from Docker

� Image describes OS/application environment: What software/con�guration?

* Registries publish images

* Docker�les are build recipes for images in simple text format

� Container is process (set), created from image (image is template
for container)

� Kubernetes

Figure 6: �Kubernetes logo� under Kubernetes Branding Guidelines; from
GitHub

� Cluster manager for Docker

* Pod = group of containers sharing resources, unit of deployment

* Pods can be replicated (copied) for scalability

* Integrated load-balancer

7

https://www.docker.com/why-docker
https://www.docker.com/brand-guidelines
https://www.docker.com/sites/default/files/legal/docker_logos_2018.zip
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://github.com/kubernetes/kubernetes/blob/master/logo/usage_guidelines.md
https://raw.githubusercontent.com/kubernetes/kubernetes/master/logo/logo_with_border.png


On Images

� With VMs, you could install software as in any other OS

� Getting messy over time

� With Docker, images are de�ned via Docker�les

� Explicitly listing necessary pieces and dependencies

� Enforcing order and reproducibility

� Sample docker�le (used in the past to generate reveal.js presentations
and PDF from org �les):

FROM ubuntu

LABEL maintainer="Jens Lechtenbörger"

RUN apt-get update && apt-get --no-install-recommends install -y \

ca-certificates emacs git \

texlive-bibtex-extra texlive-fonts-recommended texlive-generic-recommended \

texlive-latex-base texlive-latex-extra texlive-latex-recommended

COPY manage-packages.el /tmp/

Review Question

� Which conditions for virtualization as de�ned in 1974 does Docker satisfy?

Docker

Docker Installation

� Community Edition of Docker available for di�erent OSs

� See here for installation links

� Install on one of your machines, ideally on one that you can bring to (or
access in) class

� Your installation may come with a graphical user interface (GUI),
which you do not need

* Some students perceive the GUI to be confusing

* Use command line instead to enter commands shown subsequently
(any terminal should work, maybe try Bash)

First Steps

� Run hello-world, read output

� docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

[...]

� List your images and containers

8

https://gitlab.com/oer/docker/blob/master/emacs-tex/Dockerfile
https://docs.docker.com/get-docker/
https://oer.gitlab.io/OS/Operating-Systems-Introduction.html#slide-bash-access


� docker image ls

� docker container ls -all

* Help is available, e.g.:

· docker container --help

· docker container ls --help

� Maybe delete image and container

� docker rmi -f hello-world

A Web Server

� Run nginx

� docker run -p 8080:80 nginx

* -p: Web server listens on port 80 in container; bind to port 8080
on host

· Visit local server (see subsequent slide for Docker Toolbox
under Windows)

* Maybe add option --name my-nginx: Assign name to container
for subsequent use

· E.g., docker stop/start/logs/rm my-nginx

� Serve own HTML �les

� Add option -v in above docker run ... (before nginx)

* Mount (make available) directory from host in container

· E.g.: -v /host-directory/with/html-files:/usr/share/nginx/html

· /usr/share/nginx/html is where nginx expects HTML �les,
in particular index.html

· Thus, your HTML �les replace default ones of nginx

Selected Errors

� Error message: name in use already

� You cannot use the same name multiple times with docker run

--name ...

� Instead: docker start my-nginx

� Error message: port is allocated already

� You cannot use option -p with same port in several docker run

invocations

* Other container still running, stop �rst

· docker ps: Note ID or name

· docker stop <ID-or-name>

· docker run ...

* (Or some other process uses that port. Kill process or choose
di�erent port.)

9

https://en.wikipedia.org/wiki/Nginx
http://localhost:8080


On Option -v

� Say, you start nginx with option -v but your �les do not appear

� docker inspect <name-or-id-of-container>

* Check output for binds, telling you what is mapped to /usr/share/nginx/html

· May not meet your expectations

� Are you on Windows?

* Try -v C:\Users\... with Powershell

* Try -v C:\\Users/... with Bash

* Try -v /mnt/c/Users/... with WSL terminal

Docker Toolbox under Windows

� (I do not recommend this in any way. Switch to GNU/Linux.)

� Docker Toolbox installs a virtual machine, in which Docker runs

� Initial output informs about

* IP address of VM, e.g., 192.168.99.100

· Visit port 8080 on 192.168.99.100

* File system path

· /c/Program Files/Docker Toolbox

� Paths under C:\Users can be mounted by default

* E.g., docker run -p 8080:80 -v /c/Users/<your-name>/<folder-with-index.html>:/usr/share/nginx/html

nginx

· Maybe you need double slashes

Conclusions

Summary

� Virtual virtual machines are e�cient, isolated duplicates of the real
machine

� Containers are running processes, de�ned by images

� Containers on one host share same OS kernel

� Virtual machines and containers

� can be contrasted in terms of their layering approaches

� allow to deploy software in well-de�ned environments

10

https://www.getgnulinux.org/en/switch_to_linux/
http://192.168.99.100:8080
https://stackoverflow.com/questions/33312662/docker-toolbox-mount-file-on-windows


Outlook

� Containerization (in combination with version control such as o�ered by
Git) is enabler of DevOps

� DevOps = Combination of Development and Operations, see [JbA+16;
WFW+19]

* Bridge gaps between teams and responsibilities

* Aiming for rapid software release cycles with high degree of au-
tomation and stability

� Trend in software engineering

* Communication and collaboration, continuous integration (CI)
and continuous deployment (CD)

* Approach based on Git also called GitOps, see [Lim18]

· Self-service IT with proposals in pull requests (PRs)

· Infrastructure as Code (IaC)

Bibliography

License Information

Source �les are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

Except where otherwise noted, the work �Docker Introduction�, © 2018-
2021, 2023 Jens Lechtenbörger, is published under the Creative Commons license
CC BY-SA 4.0.

11

https://gitlab.com/oer/misc
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

