Complexity Example *

Jens Lechtenborger

Winter Term 2023/2024

Sample Algorithms

o Determine Big O complexity for following algorithms in Python!

e Background

— This presentation embeds klipse, to enable live code execution.
x Thus, click into code on next slides, edit it, and have results
immediately displayed.
- If code does not execute, maybe reload without cache (Ctrl+F5
in Firefox)

- Based on in-browser implementation of Python (skulpt), not
complete.

Instructions

1. Figure out what the algorithms on the next slides do.

e If you are not sure, maybe copy&paste into Python Tutor, which
enables step-by-step execution with visualizations of values.

2. Determine the algorithms’ complexities in terms of numbers of necessary
plus operations.

e If you are puzzled about the focus on plus operations, note that they
occur at the inner-most level of nesting in while loops. For each
iteration of a loop, a fixed number of other operations is executed,
and those are covered by a constant factor in the definition of Big O
complexity (M at Wikipedia.)

Subsequent quizzes lead to solutions. Please try yourself first.

*This PDF document is an inferior version of an OER in HTML format; free/libre Org
mode source repository.


https://en.wikipedia.org/wiki/Big_O_notation
https://github.com/viebel/klipse
http://skulpt.org/
https://pythontutor.com/
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://oer.gitlab.io/misc/Complexity-Example.html
https://gitlab.com/oer/misc
https://gitlab.com/oer/misc

Naive Multiplication

def naive_mult(opl, op2):
if op2 == 0: return O
result = opl
while op2 > 1:
result += opl
op2 -=1
return result

print(naive_mult(2, 3))

A solution

Naive Exponentiation

def naive_mult(opl, op2):
if op2 == 0: return O
result = opl
while op2 > 1:
result += opl
op2 =1
return result

def naive_exp(opl, op2):
if op2 == 0: return 1
result = opl
while op2 > 1:

result = naive_mult(result, opl)

op2 -=1
return result

print(naive_exp(2, 3))

e Some notes

— Code on left is meant for
non-negative integers

* Better code would test
this

— Python basics

* def naive_mult(opl,
op2) declares function
naive_mult with two
operands

x == tests for equality, = is
assignment to variable
on left

* result += opl is short
for result = result
+ opl

- thus, opl is added
to result

- —-= similarly
*x return exits the func-
tion, delivers result

e Some notes

— naive_mult is copied from
previous slide

— naive_exp shares same ba-
sic structure

* But with invocation of
naive_mult instead of
plus operation



A solution

A “Small” Change

e What happens if the order of arguments to naive_mult on the previous
slide was reversed, i.e., if naive_mult (opl, result) instead of naive_mult (result,
opl) was executed?

— Clearly, as multiplication is commutative, the result does not change.

— What about the resulting complexity?

A surprise?
License Information

Source files are available on GitLab (check out embedded submodules) under
free licenses. Icons of custom controls are by @fontawesome, released under CC
BY 4.0.

Except where otherwise noted, the work “Complexity Example”, ©) 2019-
2022 Jens Lechtenborger, is published under the Creative Commons license CC
BY-SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are mot licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., “Creative Commons” itself) remain with their respective holders.


https://gitlab.com/oer/misc
https://en.wikipedia.org/wiki/Free_license
https://fontawesome.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

