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Sample Algorithms

o Determine Big O complexity for following algorithms in Python!

e Background

— This presentation embeds klipse, to enable live code execution.
x Thus, click into code on next slides, edit it, and have results
immediately displayed.
- If code does not execute, maybe reload without cache (Ctrl+F5
in Firefox)

- Based on in-browser implementation of Python (skulpt), not
complete.

Instructions

1. Figure out what the algorithms on the next slides do.

e If you are not sure, maybe copy&paste into Python Tutor, which
enables step-by-step execution with visualizations of values.

2. Determine the algorithms’ complexities in terms of numbers of necessary
plus operations.

e If you are puzzled about the focus on plus operations, note that they
occur at the inner-most level of nesting in while loops. For each
iteration of a loop, a fixed number of other operations is executed,
and those are covered by a constant factor in the definition of Big O
complexity (M at Wikipedia.)

Subsequent quizzes lead to solutions. Please try yourself first.

*This PDF document is an inferior version of an OER in HTML format; free/libre Org
mode source repository.


https://en.wikipedia.org/wiki/Big_O_notation
https://github.com/viebel/klipse
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https://en.wikipedia.org/wiki/Big_O_notation
https://oer.gitlab.io/misc/Complexity-Example.html
https://gitlab.com/oer/misc
https://gitlab.com/oer/misc

Naive Multiplication

def naive_mult(opl, op2):
if op2 == 0: return O
result = opl
while op2 > 1:
result += opl
op2 -=1
return result

print(naive_mult(2, 3))

A solution

Naive Exponentiation

def naive_mult(opl, op2):
if op2 == 0: return O
result = opl
while op2 > 1:
result += opl
op2 =1
return result

def naive_exp(opl, op2):
if op2 == 0: return 1
result = opl
while op2 > 1:

result = naive_mult(result, opl)

op2 -=1
return result

print(naive_exp(2, 3))

e Some notes

— Code on left is meant for
non-negative integers

* Better code would test
this

— Python basics

* def naive_mult(opl,
op2) declares function
naive_mult with two
operands

x == tests for equality, = is
assignment to variable
on left

* result += opl is short
for result = result
+ opl

- thus, opl is added
to result

- —-= similarly
*x return exits the func-
tion, delivers result

e Some notes

— naive_mult is copied from
previous slide

— naive_exp shares same ba-
sic structure

* But with invocation of
naive_mult instead of
plus operation



A solution

A “Small” Change

e What happens if the order of arguments to naive_mult on the previous
slide was reversed, i.e., if naive_mult (opl, result) instead of naive_mult (result,
opl) was executed?

— Clearly, as multiplication is commutative, the result does not change.

— What about the resulting complexity?

A surprise?
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