
Howto for TTS with Emacs-Reveal
*

Jens Lechtenbörger

January 4, 2024

This presentation serves as example for a presentation that is generated with emacs reveal,
where audio is generated via text to speech. Please check out the source �le of this presentation
for details. Prior knowledge of emacs reveal is required.

Personally, the author of this software does not like learning from videos as they exhibit
limited navigation capabilities (no skim reading, limited search, no document structure, no
hyperlinks). His students like videos, though.

Maintaining high-quality video and audio over years is a considerable challenge. To over-
come this challenge, revealjs presentations can be run in a video mode where slides come with
audio explanations and advance automatically. This presentation serves as example.

1 General thoughts

� All of this builds on emacs-reveal (Lechtenbörger 2019a, 2019b)

� Check out its howto �rst

� Text-To-Speech (TTS) should read notes (#+begin_notes ... #+end_notes)

� Controlled by option reveal-with-tts

* Use customization for available speakers

� Audio is played with the audio slideshow plugin for Reveal.js

� If slides with audio advance automatically, this is a video mode

� Then, notes are required for every slides

� Reveal.js �fragments� (animations) are still possible

This presentation does not aim to explain emacs reveal, which is a free and open source
software bundle to create presentations as open educational resources based on the presenta-
tion framework reveal js.

This slide lists some general thoughts on tea tea ess.
The source code for this slide uses org properties to specify a break of ten seconds before

advancing to the next slide after audio stops. This o�ers some reading time for the bullet
points.

However, the audience does not receive any clue regarding the length of this pause. This
is di�erent with break tags used in the notes on the next slide.

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://gitlab.com/oer/emacs-reveal/
https://oer.gitlab.io/emacs-reveal-howto/
https://github.com/rajgoel/reveal.js-plugins/tree/master/audio-slideshow
https://oer.gitlab.io/emacs-reveal-howto/tts-howto.html
https://gitlab.com/oer/emacs-reveal-howto
https://gitlab.com/oer/emacs-reveal-howto


1.1 Technical Idea

� Implement TTS as two-stage process

� First, extract notes from presentation

* Generate a text �le for each note

· Its name is a hash value of the contents

* Generate one index �le that stores names (and other information)
for all text �les

* This happens during export/publication of Org �les into reveal.js
presentations

� Second, run TTS software on index �le to generate audio

* Implemented in Docker image emacs-reveal/tts

* Generated audio shares hash value of its text as part of its name,
enabling caching of unchanged audio

� Use audio slideshow plugin to play audio

<break time=�3s� /> Speech is generated from text in a process with two stages. First,
usual presentation notes serve as text input. These notes may embed SSML break elements
to specify a break with a given duration in seconds between sentences. See the source code of
this slide for examples.

While processing the org source code to generate a presentation, each note is extracted
into a text �le (with some preprocessing). The name of such a text �le is the hash value of
its contents. Thus, changing contents lead to changing names. <break time=�1s� />

In addition, another text �le serves as index, collecting the names and positions of texts
in a presentation. Besides, this index �le also records con�guration information, such as the
speaker to be used. <break time=�1s� /> Second, the index serves as input for the text to
speech implementation, which is available as Docker image. Here, names of generated audio
again embed the hash values of their input texts, enabling caching of unchanged audio.

In presentations, audio is played with the audio slideshow plugin. <break time=�3s� />

1.2 Docker image emacs-reveal/tts

� Contains two free and open TTS implementations

� SpeechBrain

� Microsoft SpeechT5

� For size reasons, without GPU support

� Small wrapper package tts.py

� Sample invocation shown in .gitlab-ci.yml of this presentation

This slide mentions some technical aspects of the text to speech approach. Please see for
yourself if you are interested.

2 Slide with notes and fragments

These notes are supposed to be transformed to audio by tea tea ess and read by the audio
plugin (if it is enabled). Org-re-reveal converts text to have each sentence on a single line,
which is converted to audio by Docker image tts of emacs-reveal.

Note that hyphenated words and abbreviations are usually not pronounced correctly, e.g.,
CPUs. We might rewrite this to use multiple see pea use?

2

https://gitlab.com/oer/emacs-reveal/container_registry/4512628
https://github.com/rajgoel/reveal.js-plugins/tree/master/audio-slideshow
https://huggingface.co/speechbrain/tts-tacotron2-ljspeech
https://huggingface.co/microsoft/speecht5_tts
https://gitlab.com/oer/emacs-reveal/-/blob/main/docker/code/tts.py
https://gitlab.com/oer/emacs-reveal-howto/-/blob/main/.gitlab-ci.yml


Notes can contain Org markup, such as hyperlinks, bold, emphasis, code, verbatim.
Such markup is removed for tea tea ess in org-re-reveal.
Lists can be used in notes as well:

1. This is a �rst item in a list.

2. Second item.

Note that numbers are currently skipped in text to speech. Thus, the text of enumerations
should clarify which point is currently read.

As we aim for text to speech, notes should consist of full sentences, including full stops,
question marks etc. Warnings are shown upon export if the code detects this not to be the
case.

Notes on this slide clarify some aspects of the text generated by org-re-reveal
as basis for TTS.

Besides, for demonstration purposes, this slide contains fragments with sep-
arate notes:

� First appearing point, with notes

Each fragment has its own notes. <break time=�1s� /> These ones are meant for the
�rst bullet point.

� Second appearing point

Explanations continue with this second bullet point.

3 Slides with notes, no fragments

� First point

� Notes only for overall slide

� Second point

These are usual or general notes for the entire slide.
For text to speech, to help the audience, it might be better to animate lists and explain

them in separate notes for each bullet point.

3.1 Slide on second level of nesting

� Foo

� Bar

Slides can be nested. Audio �le names by default follow the schema of dot-separated
numbers for horizontal and vertical slides, including fragments.

3.1.1 Third level of nesting

My deepest level of nesting is used for this empty slide.

3.1.2 Third level of nesting, again

This slide serves as test case for generated audio names.

3.2 Another test case

This is another test case for generated audio names.

3

https://example.org


4 The End

Figure 1: The road ahead . . . (�Figure� under CC0 1.0; converted from Pixabay)

https://gitlab.com/oer/
The end is near. Or the beginning?

4.1 Final slide (silent)

� Here, the notes specify the names for the text and audio �le as another-slide-audio

� Thus, the audio plugin will not play this properly with the current
con�guration

The source code of this slide speci�es the name for the text and audio �les of the notes.
Maybe this is useful for you, maybe not. In this presentation, that audio is not played.

4.2 Bibliography

Lechtenbörger, Jens. 2019a. �Emacs-reveal: A software bundle to create OER
presentations.� Journal of Open Source Education (Jose) 2 (18). https:

//doi.org/10.21105/jose.00050.
���. 2019b. �Simplifying license attribution for OER with emacs-reveal.�

In 17. Fachtagung Bildungstechnologien (DELFI 2019), edited by Niels
Pinkwart and Johannes Konert, 205�16. Bonn: Gesellschaft für Informatik
e.V. https://doi.org/10.18420/delfi2019_280.

My presentations usually contain a bibliography like this one. Did you notice the references
on an earlier slide? Those are hyperlinks into this slide.

License Information

Except where otherwise noted, the work �Howto for TTS with Emacs-Reveal�,
© 2023-2024 Jens Lechtenbörger, is published under the Creative Commons
license CC BY-SA 4.0.

4

https://creativecommons.org/publicdomain/zero/1.0/
https://pixabay.com/en/financial-equalization-help-1015282/
https://gitlab.com/oer/
https://doi.org/10.21105/jose.00050
https://doi.org/10.21105/jose.00050
https://doi.org/10.18420/delfi2019_280
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., �Creative Commons� itself) remain with their respective holders.

This presentation is distributed under a creative commons license, which grants various
freedoms to you. Please use them.

5

https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding

	General thoughts
	Technical Idea
	Docker image emacs-reveal/tts

	Slide with notes and fragments
	Slides with notes, no fragments
	Slide on second level of nesting
	Third level of nesting
	Third level of nesting, again

	Another test case

	The End
	Final slide (silent)
	Bibliography


