Howto for T'TS with Emacs-Reveal *

Jens Lechtenborger

December 30, 2025

This presentation is an example of how emacs-reveal can be used to create presentations
with automatically generated audio via text-to-speech, or T'TS for short. Please check out the
source file of this presentation for details. Prior knowledge of emacs-reveal is required.

Personally, the author of this software does not like learning from videos as they exhibit
limited navigation capabilities (no skim reading, limited search, no document structure, no
hyperlinks). His students like videos, though.

Maintaining high-quality video and audio over years is a considerable challenge. To over-
come this challenge, reveal.js presentations can be run in a video mode where slides come with
audio explanations and advance automatically. This presentation serves as example.

1 General thoughts

e All of this builds on emacs-reveal (Lechtenboérger 2019a, 2019b)

— Translate Org mode source documents to HTML presentations with
reveal.js
— Check out emacs-reveal howto

Briefly, emacs-reveal is a free and open-source software bundle to create HTML presen-
tations from Org mode source documents as open educational resources based on the
JavaScript presentation framework reveal.js. A howto document and scientific articles
explain emacs-reveal in some detail.

e Text-To-Speech (TTS) reads notes (#+begin_notes ... #+end_notes)

— Controlled by option reveal-with-tts
x Use customization for available speakers

— Play audio with audio slideshow plugin for Reveal.js

This presentation demonstrates some features of emacs-reveal related to TT'S.
e If slides with audio advance automatically, this is a video mode

— Then, notes are required for every slides
— Reveal.js “fragments” (animations) are still possible

As you see here, animations work in a video-like mode, with slides advancing automat-
ically.

*This PDF document is an inferior version of an OER in HTML format; free/libre Org
mode source repository.

https://gitlab.com/oer/emacs-reveal
https://gitlab.com/oer/emacs-reveal/
https://orgmode.org/
https://revealjs.com/
https://oer.gitlab.io/emacs-reveal-howto/
https://orgmode.org/
https://github.com/rajgoel/reveal.js-plugins/tree/master/audio-slideshow
https://oer.gitlab.io/emacs-reveal-howto/tts-howto.html
https://gitlab.com/oer/emacs-reveal-howto
https://gitlab.com/oer/emacs-reveal-howto

1.1 Technical Idea

e Implement TTS as two-stage process

— First, extract notes from presentation

Speech is generated from text in a process with two stages. First, usual presen-
tation notes serve as text input. These notes may embed SSML break elements
to specify a break with a given duration in seconds between sentences. See the
source code of this slide for examples.

x Generate a text file for each note

- Its name is a hash value of the contents

While processing the Org source code to generate a presentation, each note
is extracted into a text file (with some preprocessing as revisited on a later
slide). The name of such a text file is the hash value of its contents. Thus,
changing contents lead to changing names.

* Generate one index file that stores names (and other information)
for all text files

In addition, another text file serves as index, collecting the names and posi-
tions of texts in a presentation. Besides, this index file also records config-
uration information, such as the speaker to be used.

* This happens during export/publication of Org files into reveal.js
presentations

This text processing happens automatically in the background.
— Second, run TTS software on index file to generate audio

* Implemented in Docker image emacs-reveal /tts

- Image includes several TTS implementations, highest quality
offered by Kokoro (next to SpeechT5 and SpeechBrain)

* StyleTTS2 available in Docker image emacs-reveal /tts-styletts2
- Activate with default voice: #+0PTIONS: reveal_with_tts:StyleTTS2
- Or with target audio for voice cloning: #+0PTIONS: reveal_with_tts:StyleTTS2:/ocer/t

*x Generated audio shares hash value of its text as part of its name,
enabling caching of unchanged audio

Second, the index serves as input for the text to speech implementation, which is

available as Docker image. Here, names of generated audio again embed the hash
values of their input texts, enabling caching of unchanged audio.

e Use audio slideshow plugin to play audio

In presentations, audio is played with the audio slideshow plugin.

1.2 Docker image emacs-reveal/tts

e Contains free/libre and open TTS implementations

— SpeechBrain
— Microsoft SpeechT5
— Kokoro

e For size reasons, without GPU support

e Small wrapper package tts.py

https://gitlab.com/oer/emacs-reveal/container_registry/4512628
https://github.com/yl4579/StyleTTS2/
https://gitlab.com/oer/emacs-reveal/container_registry/8167358/
https://github.com/rajgoel/reveal.js-plugins/tree/master/audio-slideshow
https://huggingface.co/speechbrain/tts-tacotron2-ljspeech
https://huggingface.co/microsoft/speecht5_tts
https://huggingface.co/spaces/hexgrad/Kokoro-TTS
https://gitlab.com/oer/emacs-reveal/-/blob/main/docker/code/tts.py

— Sample invocation shown in .gitlab-ci.yml of this presentation

— “Production” settings in course IT Systems

This slide mentions some technical aspects of the text to speech approach. Please see for
yourself if you are interested.

2 Slide with notes and fragments

Notes are transformed to audio by TTS and read by the audio plugin (if it is enabled). Org-
re-reveal converts text to have each sentence on a single line, which is converted to audio by
a Docker image of emacs-reveal.

Depending on the TTS model, hyphenated words and abbreviations may not be pro-
nounced correctly. However, org-re-reveal contains a customizable set of translation rules for
preprocessing.

Notes can contain Org markup, such as hyperlinks, bold, emphasis, code, verbatim.

Such markup is removed for T'TS in org-re-reveal.

Lists can be used in notes as well:

1. This is a first item in a list.
2. Second item.

As we aim for text to speech, notes should consist of full sentences, including full stops,
question marks etc. Warnings are shown upon export if the code detects this not to be the
case.

Notes on this slide clarify some aspects of the text generated by org-re-
reveal as basis for TTS. To pronounce numbers, abbreviations, and “compli-
cated” word, see variable org-re-reveal-tts-normalize-table.

Besides, for demonstration purposes, this slide contains fragments with sep-
arate notes:

e First appearing point, with notes
Each fragment has its own notes.

These ones are meant for the first bullet point.

e Second appearing point

Explanations continue with this second bullet point.

3 A real example

e Next slide is part of a course on IT Systems

e Some evaluation results regarding TTS quality and presentation features
are provided towards the end of the Readme of emacs-reveal

The next slide embeds a real slide from a course on IT Systems. Thus, its references to
surrounding contents need to be understood in the context of that course. See there if you
are interested in the concept of virtual memory in operating systems.

As technical detail, note that the figure on that slide embeds names of audio files, which
are defined by audio-name properties on the notes.

On a general note, I publish some evaluation results regarding presentation features and
TTS quality in the Readme of emacs-reveal.

https://gitlab.com/oer/emacs-reveal-howto/-/blob/main/.gitlab-ci.yml
https://gitlab.com/oer/oer-courses/it-systems
https://example.org
https://oer.gitlab.io/oer-courses/it-systems/15-OS-Memory-I.html#slide-sample-page-table-translation-range
https://gitlab.com/oer/emacs-reveal/

3.0.1 Offset as Pointer into Range

Address Translation

Virtual page number Page offset Frame number Page offset

10 bits 10 bits arto 5 bits 10 bits

Virtual page number 0 1 KiB Fram, 0 1 KiB

Virtual page number 1 1 KiB WM 1 KiB
Virtual page number 2 1KiB Frame number 2 1 KiB E

Virtual page number 3 1 KiB Frame number 3 1 KiB

Figure 1: “Address translation with offset in covered address range” by Max
Liitkemeyer and Jens Lechtenborger under CC BY-SA 4.0; from GitLab

For a different view on the hierarchical nature of virtual addresses, let us continue the previous
scenario of virtual addresses of 20 bits, to be translated to physical addresses of 15 bits, with
a page size of 1 KiB.

Out of the 2'0 — 1024 possible pages and 25 — 32 possible frames, only the first four of
each type are shown.

As before, suppose that page 0 is located in frame 1 as recorded in the page table. Thus,
for translation of addresses falling into page 0, the 0 encoded in the first 10 bits of the virtual
address is replaced by a 1 encoded in the first 5 bits of the physical address. Importantly, the
10 offset bits do not change under address translation.

Note how, given 10 bits for the offset, each page and each frame cover a range of 1024
addresses. The offset identifies a single byte in that range.

Subsequent slides provide sample calculations for address translation.

4 The End

Figure 2: The road ahead ... (“Figure” under CCO 1.0; converted from Pixabay)

https://gitlab.com/oer/
The end is near. Or the beginning?

https://creativecommons.org/licenses/by-sa/4.0/
https://gitlab.com/oer/figures/blob/master/OS/Address_Translation_range_offset.svg
https://creativecommons.org/publicdomain/zero/1.0/
https://pixabay.com/en/financial-equalization-help-1015282/
https://gitlab.com/oer/

4.1 Bibliography

Lechtenborger, Jens. 2019a. “Emacs-reveal: A software bundle to create OER
presentations.” Journal of Open Source Education (Jose) 2 (18). https:
//doi.org/10.21105/jose.00050.

———. 2019b. “Simplifying license attribution for OER with emacs-reveal.”
In 17. Fachtagung Bildungstechnologien (DELFI 2019), edited by Niels
Pinkwart and Johannes Konert, 205-16. Bonn: Gesellschaft fiir Informatik
e.V. https://doi.org/10.18420/delfi2019_280.

My presentations usually contain a bibliography like this one. Did you notice the references
on an earlier slide? Those are hyperlinks into this slide.

License Information

Except where otherwise noted, the work “Howto for TTS with Emacs-Reveal”,
© 2023-2025 Jens Lechtenborger, is published under the Creative Commons
license CC BY-SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are mot licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., “Creative Commons” itself) remain with their respective holders.

This presentation is distributed under a creative commons license, which grants various
freedoms to you. Please use them.

I do not give permission for text and data mining on my resources, though, if you do
not follow the license terms. This presentation embeds machine readable policy information.
Check it out if necessary or read more elsewhere.

https://doi.org/10.21105/jose.00050
https://doi.org/10.21105/jose.00050
https://doi.org/10.18420/delfi2019_280
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://oer.gitlab.io/tdm/licensing.html

	General thoughts
	Technical Idea
	Docker image emacs-reveal/tts

	Slide with notes and fragments
	A real example
	Offset as Pointer into Range

	The End
	Bibliography

