
BattleThreads (o�ine variant)

Jens Lechtenbörger, Justus Rotermund

May 2020

1 Background

This document describes rules for the game BattleThreads suggested in [Hil+03],
aiming for the following learning objectives:

� Explain distinctions between threads and processes

� Explain advantages of a multithreaded organization in structuring appli-
cations and in performance

The gameplay of BattleThreads is similar to the one of the famous Battleship,
where two opponents each place a number of ships in their own territory and
then shoot into the opponent's territory to destroy the opponent's ships.

Students play in teams, where opposing teams follow di�erent rules. One
team acts as single process with threads sharing their data structures, while the
other team coordinates as set of isolated processes.

2 Playing Field and Goal

Each team's territory is de�ned by a grid of 8x8 �elds. Rows are identi�ed by
letters (A-H), columns by numbers (1-8). Each team places 5 ships (two ships
occupying 4 �elds, three occupying 3 �elds), either vertically or horizontally,
but not diagonally. A sample territory can be seen in Table 1.

Table 1: Territory with positioned ships
1 2 3 4 5 6 7 8

A X X X X
B X X
C X X X
D X X
E X
F X X X X X
G
H

Each team aims to destroy all opponent's ships, where a ship is considered
to be destroyed when it has been hit at every �eld. The game is over as soon
as all ships of one team are destroyed. The team with no ships left loses, the
other team wins.

1

https://en.wikipedia.org/wiki/Battleship_(game)


3 General Remarks

Sheets of paper serve as data structures, which record positions of own ships
and knowledge about the opponent's territory.

Whereas a team with multiple threads uses a shared data structure to keep
track of joint knowledge, a team with multiple processes must communicate to
exchange knowledge. During the game this implies that a team of threads uses
one sheet of paper, which all team members can read and write. In contrast, in
a team of processes each player has his or her own sheet of paper and explicit
communication is necessary to inform team members about relevant events.

While an OS isolates processes from each other, during the game players need
to make sure that other processes do not spy on their data structures. Thus,
neither players from di�erent teams nor players within a team of processes must
be able to look at each other's data structures.

This game exists in two variants, either o�ine with sheets of paper or online
with �les. The paper-based variant requires that teams sit next to each other,
while the �le-based variant requires online access for all team members who can
be located anywhere.

These instructions describe the o�ine variant with sheets of paper.

3.1 Preparation

Build teams (4 players or more; your instructor may provide more information
how to assign students to teams, processes, and threads). Agree on an order in
which to shoot later on.

Each team of threads chooses one player as communicator. The communi-
cator is that thread to whom processes turn to communicate shots and their
outcome.

As processes are isolated from each other during the game, it makes sense
that members of process teams agree on a strategy ahead of time. (E.g., does
everyone take random shots? What to do in case of hits?)

3.1.1 Paper-Based Variant

Your instructor will provide sheets of paper to play the game in a lecture hall.

3.1.2 Online Variant

You need to create �les for data structures before you can begin to play, and
di�erent preparations for the two types of teams are necessary.

The following data structures are necessary:

� Team with independent processes

� Each player receives a private, blank sheet of paper to communicate
shots into opponent's territory.

� Each player receives a private sheet of paper with two grids.

� Team with threads within single process

� The team receives a shared sheet of paper with two grids.

2



Gather with all players of both teams in an online space (e.g., group chat or
audio/video conference). Decide this ahead of time.

3.2 General gameplay

The game is played in rounds, where each player shoots once per round. The
di�erent rules for teams with multiple processes and teams with multiple threads
are described in the following sections.

The team with multiple processes starts the game by taking the �rst shot as
explained in the next section. (This choice has no special impact on the game
but answers the otherwise open question which team should start.)

4 Rules for Teams with Multiple Processes

4.1 Preparation

1. Each player receives a private, blank sheet of paper to communicate shots
into opponent's territory.

2. Each player receives a private sheet of paper with two grids.

This data structure contains two empty grids, one to record the positions
of own ships as well as shots taken by opponents (�own ships�), the other
one to record information about opponents' ships (�their territory�) during
the game.

This sheet of paper represents data structures that are local to the in-
dividual process/player. Therefore, it is important to make sure that no
other player can read this sheet of paper.

3. As team, place the 5 ships as described above. Choose seats such that
opponents cannot see each other's sheets of paper. Each player marks
their positions on his or her own grid �our ships�. The opponents must
not learn the result.

4.2 Gameplay

4.2.1 First Round (each player shoots once)

1. A player shoots once. For this, the shooter indicates the target �eld (for
example G7) in the sheet of paper that is shared with the communicator
thread of the other team.

As players simulate isolated processes, no other member of the shooter's
team may know at what �eld the player shoots.

2. The communicator thread indicates the outcome of the shot, e.g., �m�
(miss), �h� (hit), or �d� (ship destroyed).

No other member of the shooter's team may know whether the shot was
a hit or a miss.

3. The player marks the success of the shot on his or her own grid �their
territory�.

3



4. It is now the other team's turn to shoot. Every process records the an-
nounced shot in the grid �our ships� (to keep track of what happened
and, in particular, to be able to detect whether a ship is destroyed), an
arbitrary team member may communicate the outcome.

5. After the other team �nished their turn, the next player in the team
continues with step 1 until each player has shot once.

4.2.2 Following Rounds (after each player shot once)

1. The shooter can choose whether to shoot or to communicate his or her grid
�their territory� with the other team members (processes). This choice is
re�ected by following the instructions of either (a) or (b):

(a) The shooter decides to take another shot and follows the instructions
for the �rst round.

(b) The shooter loudly announces to communicate the status of the grid
�their territory� and proceeds to step 2.

2. The shooter announces the outcome of his or her previous shots. The other
team members copy this information onto their grids �their territory�. The
opposing team's members may hear this as well, since only facts already
known to them are revealed.

3. It is now the other team's turn.

4. After the other team �nished their turn, the next player in the team
continues with step 1, again with a decision to shoot or communicate.

5 Rules for Teams with Multiple Threads

5.1 Preparation

1. Choose one player as communicator. The communicator is a thread to
whom processes turn to communicate about shots and their outcome. The
communicator can also take shots just as any other thread.

2. The team receives a shared sheet of paper with two grids.

This data structure contains two empty grids, one to record the positions
of own ships and shots taken by opponents (�own ships�), the other one to
record information about opponents' ships (�their territory�) during the
game.

This sheet of paper represents data structures that are shared by all
threads within one team but are protected from other teams. Therefore, it
is important that no player of one team can see the other team's territory.

3. As team, place the 5 ships as described above by marking their positions
on the grid �own ships�. The opponents must not learn the result.

4



5.2 Gameplay

1. A player shoots once. For this, the shooter communicates the target �eld
to the other group (for example G7).

2. An arbitrary member of the other team indicates whether the shot was a
miss, a hit, or it destroyed a ship. The shooter records this information
by writing down �m� (miss), �h� (hit), or �d� (ship destroyed) in the grid
�their territory�.

3. It is now the other team's turn.

4. A shooter of the opposing team passes a target location to the commu-
nicator thread who checks the outcome and replies with �m� (miss), �h�
(hit), or �d� (ship destroyed). Also, the communicator marks the location
in the grid �our ships� (to keep track of what happened and, in particular,
to be able to detect whether a ship is destroyed).

5. After the other team �nished their turn, the next player in the team
continues with step 1.

6 Sample Data Structures after 15 Shots

6.1 Player of Process Team

Table 2: A process' local data structure
1 2 3 4 5 6 7 8

A m hh h m h m m
B mm
C
D m
E m
F
G
H

The processes communicated their local views on �their territory� three times
(only 12 shots were taken). The processes took shots at random and communi-
cated as soon as a hit was landed (except for the two processes hitting on A3,
only the �rst one communicated). The others searched around the hit, however
several shots were taken twice. The result is shown in Table 2.

6.2 Thread Team

The threads were able to completely destroy two ships. The general strategy
was to target a grid's diagonal and search around one hit for other hits. The
result is shown in Table 3.

5



Table 3: Threads' data structure
1 2 3 4 5 6 7 8

A h m
B h m
C m h
D m m
E m
F h h h h
G m m
H

[Hil+03] John M. D. Hill et al. �Puzzles and Games: Addressing Di�erent
Learning Styles in Teaching Operating Systems Concepts�. In: SIGCSE
Bull. 35.1 (Jan. 2003), pp. 182�186. issn: 0097-8418. doi: 10.1145/
792548.611964. url: https://dl.acm.org/citation.cfm?doid=
792548.611964.

License Information

This document is part of an Open Educational Resource (OER) course on Op-
erating Systems. Source code and source �les are available on GitLab under
free licenses.

Except where otherwise noted, the work �BattleThreads (o�ine variant)�,
© 2017 Justus Rotermund and© 2017, 2020 Jens Lechtenbörger, is published
under the Creative Commons license CC BY-SA 4.0.

6

https://doi.org/10.1145/792548.611964
https://doi.org/10.1145/792548.611964
https://dl.acm.org/citation.cfm?doid=792548.611964
https://dl.acm.org/citation.cfm?doid=792548.611964
https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/

	Background
	Playing Field and Goal
	General Remarks
	Preparation
	Paper-Based Variant
	Online Variant

	General gameplay

	Rules for Teams with Multiple Processes
	Preparation
	Gameplay
	First Round (each player shoots once)
	Following Rounds (after each player shot once)


	Rules for Teams with Multiple Threads
	Preparation
	Gameplay

	Sample Data Structures after 15 Shots
	Player of Process Team
	Thread Team


