
OS11: Security
Including parts of Chapter 11 and Section 9.6.3 of
(for this presentation)

Computer Structures and Operating Systems 2023
Dr. Jens Lechtenbörger ()

[Hai19]
Usage hints

License Information

Data Science: Machine Learning and Data Engineering (Prof. Gieseke)
Dept. of Information Systems
WWU Münster, Germany

1
Imprint | Privacy Policy

https://www.uni-muenster.de/en/
https://www.ercis.org/
https://oer.gitlab.io/hints.html
https://www.wi.uni-muenster.de/department/dasc
https://www.wi.uni-muenster.de/
https://www.uni-muenster.de/en/
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

To toggle these notes, press v
If a slide contains audio, notes might show transcript

Press ? for key bindings (in particular, a, o, n, p, Ctrl-Shift-f)
Presentations support two different PDF formats, see

Both hyperlinked on index page
Concise PDF format (replace .html and whatever follows in with .pdf)
Print browser view to PDF (add ?print-pdf after .html, then print to PDF;)

If you find the amount of outgoing links to be distracting, see
Add ?hidelinks (maybe with a number) after .html

See for other non-obvious features

Speaker notes

usage notes

address bar
suggested settings

usage notes

usage notes

file:///imprint.html
file:///privacy.html
https://oer.gitlab.io/hints.html
https://en.wikipedia.org/wiki/Address_bar
https://revealjs.com/pdf-export/
https://oer.gitlab.io/hints.html
https://oer.gitlab.io/hints.html

1. Introduction

3
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

 (Wk 20)
 (Wk 21)

 (Wk 21)
 (Wk 23)

 (Wk 24)
 (Wk 25)

 (Wk 25)
 (Wk 25)

 (Wk 26)
 (Wk 26)

 (Wk 27)
 (Wk 28)

1.1. OS Plan
OS Overview
OS Introduction
Interrupts and I/O
Threads
Thread Scheduling
Mutual Exclusion (MX)
MX in Java
MX Challenges
Virtual Memory I
Virtual Memory II
Processes
Security

4
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Introduction.html
file:///builds/oer/OS/public/Operating-Systems-Introduction.html
file:///builds/oer/OS/public/Operating-Systems-Interrupts.html
file:///builds/oer/OS/public/Operating-Systems-Threads.html
file:///builds/oer/OS/public/Operating-Systems-Scheduling.html
file:///builds/oer/OS/public/Operating-Systems-MX.html
file:///builds/oer/OS/public/Operating-Systems-MX-Java.html
file:///builds/oer/OS/public/Operating-Systems-MX-Challenges.html
file:///builds/oer/OS/public/Operating-Systems-Memory-I.html
file:///builds/oer/OS/public/Operating-Systems-Memory-II.html
file:///builds/oer/OS/public/Operating-Systems-Processes.html
file:///builds/oer/OS/public/Operating-Systems-Security.html
file:///imprint.html
file:///privacy.html

Table of Contents
1. Introduction
2. Cryptography
3. Message Integrity
4. OS Context
5. Conclusions

5
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.2. Today’s Core Questions
How can I ensure that my downloaded software has
not been manipulated?
What is e-mail self-defense?

6
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.3. Learning Objectives
Explain confidentiality and integrity as security goals

Discuss differences between end-to-end and hop-by-hop goals

Explain use of hash values and digital signatures for
integrity protection and discuss their differences

Create and verify digital signatures (on e-mails and files/software)

7
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.4. Retrieval Practice
Security — So far

Hardware building blocks
: Restrict instruction set

Protect kernel data structures
Enable access control via system call API

Transfer control periodically back to OS

 as major OS abstraction
Virtual address spaces

Isolate processes from each other

Access rights

Kernel mode vs user mode

Timer interrupts

Process

8
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Interrupts.html#slide-kernel-mode
file:///builds/oer/OS/public/Operating-Systems-Interrupts.html#slide-terminology
file:///builds/oer/OS/public/Operating-Systems-Processes.html
file:///imprint.html
file:///privacy.html

1.4.1. Quiz on Hashing

1. Select correct statements about hash functions.

 Hash functions are functions in the mathematical sense.

 Hash functions map arbitrary-sized data to fixed-sized data.

 A hash collision occurs if two pieces of data are mapped to the same hash value.

 If a hash function maps arbitrary-sized data to fixed-sized data, an infinite amount of hash collisions is guaranteed.

 As hash collisions occur, hash functions cannot be invertible.

 Given a hash value h(x), it is impossible to compute the original data x from which the hash value was computed. (This points to a fundamental difference of hashing and encryption: Given an encrypted piece of data, say e(x), it is
possible to compute the original data x [using a suitable decryption function and decryption key].)

Hashing is a basic technique.

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

9
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.5. Information Security
Safety: Protection against unintended/natural/random
events

(Not focus here; requires proper management, involves training,
redundancy, and insurances)

Security: Protection against deliberate attacks/threats
Protection of security goals for objects and services against
attackers

10
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.5.1. Security Goals
Classical security goals: CIA triad

Confidentiality
Only intended recipient can access information
Typically guaranteed by encryption mechanisms

(Or, e.g., with envelopes and protecting laws)

Integrity
Detection of unauthorized modification
Typically guaranteed by cryptographic checksumming mechanisms

(Or, e.g., with signatures and/or seals)

Availability
Information and functionality available when requested
Supported by redundancy

Further goals
Accountability, authenticity, anonymity, (non-) deniability, …

11
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.5.2. Relativity
Security is relative

You need to define your goals and risks for specific pieces of
information, e.g.:

How much confidentiality for course slides vs course exam?
Apparently, it’s easy to keep the slides “secure”

Harder for the exam

Also: Who is the attacker with what resources?
Select appropriate security mechanisms, typically with risk acceptance

Security via design process and management
BSI (Germany) and ISO standards

Topic in its own right
IT-Grundschutz 🚀

12
Imprint | Privacy Policy

https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/IT-Grundschutz/it-grundschutz_node.html
file:///imprint.html
file:///privacy.html

1.5.3. Attacker Models
Sample classifications of attackers

Strategy
Targeted (specialized, looks for “weakest link”)

E.g., espionage, blackmailing

Opportunistic (standardized, looks for “weakest target”)
E.g., phishing, extortion, bot/zombie creation (DDoS, spam, bitcoin mining, proxy)

Financial resources
Compute capacity
Time
Knowledge (insider and position?)

13
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.6. Design Principles for Secure Systems
Selected principles based on

Fail-safe defaults (whitelisting): If no explicit permission, then
deny
Least privilege (need to know): Subject has only those privileges
that are necessary for given task
Economy of mechanism: Security mechanisms should be as
simple as possible
Complete mediation: All accesses need to be checked
Open design: Security should not depend on secrecy; instead
open reviewing
Separation of privilege: Permission not based on single condition
Psychological acceptability: Security should not hinder usage
And more, see or

[SS75]

[SS75] [Hai19]

14
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.7. End-to-End Security
Security goals may have varying scope

Hop-by-hop
End-to-end

Integrity and confidentiality are end-to-end goals
Beware: That’s not generally understood!

(See next slide…)

Consider hop-by-hop confidentiality
Alice wants to send confidential message M to Bob via one hop, Eve

Alice encrypts M for Eve, sends encrypted M to Eve
Eve decrypts M, encrypts M for Bob, sends encrypted M to Bob

Security gain or loss? (Compared to what?)

Hop-by-hop integrity similarly

15
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

Suppose that you want to send some e-mail to a friend, where the e-mail’s contents are a private matter. In this case,
the security goal confidentiality needs to be protected. Quite likely, you want confidentiality as an end-to-end goal
meaning that only the communication endpoints, namely you and your friend, can read the message, independently of
the number of hops or intermediary machines (such as Internet backbone routers) that forward the message from you to
your friend.

If you send the e-mail as usual, sender and recipient need a password to access their accounts and e-mails at their
providers’ servers. Thus, some protection is offered for e-mails at their destinations. However, obviously also the
providers’ administrators and everybody else with access to their infrastructures (such as intelligence agencies violating
human rights and other criminals) have access to the e-mails. Thus, those parties can access your draft folder as well
as the recipient’s inbox to access messages, violating confidentiality.

Besides, in the case of e-mail it is not clear whether e-mails forwarded between providers are encrypted or not. In
response to the Snowden revelations there is a major shift towards encryption in transit; however, this type of encryption
is not guaranteed. Thus, your e-mail might also traverse the Internet in plaintext, and on its way it typically passes a
couple of computers owned by parties that are unknown to you and that might copy or change your e-mails. Actually,
when e-mails cross country borders it’s almost certain that intelligence agencies copy the messages, again violating
confidentiality. Obviously, this type of confidentiality violation can be prevented if providers encrypt their message
exchanges, which would guarantee confidentiality on a hop-by-hop basis.

Clearly, encryption on a hop-by-hop basis is better than no protection, while you need to take protection into your own
hands if you are interested in end-to-end goals.

Speaker notes

file:///imprint.html
file:///privacy.html

1.7.1. (Counter-) Example: De-Mail
 is a German approach defining legally

binding, “secure” e-mail
General picture

Strong (hop-by-hop) security
for each of the three blue
links
Plaintext at both providers
(and broken approach
towards integrity, see

)
End-to-end encryption allowed
Digital signatures used in special cases

De-Mail 🚀

[Lec11]

16
Imprint | Privacy Policy

https://de.wikipedia.org/wiki/De-Mail
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

De-Mail serves as example for hop-by-hop security and as counter-example for end-to-end security. Key characteristics
are shown on this slide. While De-Mail may be attractive for legal reasons when it allows to replace paper with digital
communication, I don’t see much value for individuals.

The broken aspect of integrity protection mentioned here is that the technical specification for De-Mail includes a step
“Metadaten setzen und Integrität sichern” which adds a simple hash value that is later checked in a step called
“Integritätssicherung prüfen”. As part of a self-study assignment you should convince yourself that such a hash value
provides no integrity protection against attackers.

Speaker notes

file:///imprint.html
file:///privacy.html

2. Cryptography

18
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.1. Key Notions
Cryptography = Art of “secret writing”
Set of mathematical functions

Cryptographic hash functions
Classes of encryption algorithms

Symmetric, secret key: en- and decryption use the same shared secret key
Asymmetric, public key: participants own pairs of secret (decryption,
signature creation) and public (encryption, signature verification) keys
Hybrid: asymmetric initialization to establish symmetric keys for encryption

Basis for various security mechanisms

Performance
Hashing > Symmetric Enc. > Asymmetric Enc.

(One can hash more data per second than one can encrypt)
(One can encrypt more data per second symmetrically than asymmetrically)

19
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.1.1. Basic Assumptions
Fundamental Tenet of Cryptography from

“If lots of smart people have failed to solve a problem, then it
probably won’t be solved (soon).”
The problem to solve here: Break specific crypto algorithm

If that did not happen for a long time, probably the algorithm is strong
(Lots of crypto algorithms come without security proof)

[KPS02]

 (1883)
Security of crypto systems should not depend upon secrecy of en-
and decryption functions (but on secrecy of the used keys)
“Open Design” principle from

Not respected in national security/military/intelligence settings in Germany
From Enigma through Libelle (approved for “Streng geheim”; developed by BSI, not
published)

Opposite: Security through obscurity

Kerckhoffs’ Principle

[SS75]

20
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Kerckhoffs%27s_principle
file:///imprint.html
file:///privacy.html

2.1.2. Names
Alice and Bob; Charlie, Carol, Dave, …

Communicate frequently
Value their privacy
Have limited trust in third parties
Appeared to be subversive individuals in the past

Growing understanding in general public

And, of course, politically correct names instead of “A” and “B”

Eve, Mallory, Trudy
Eavesdropper, malicious attacker, intruder

21
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.1.3. Notation
M, C: Message and ciphertext (encrypted messages)
K: Key (random bits, maybe with certain structure)
E, D: En- and decryption functions
KAB: Secret key shared between Alice and Bob
KA-: Alice’s private key
KA+: Alice’s public key
K(M): Message M encrypted with key K (if function E is
clear from context)
[M]K: Message M signed with key K

22
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.2. GnuPG

Free software for (e-mail) encryption and digital signatures
Implementation of

Secure e-mail based on hybrid cryptography

In addition, lots of cryptographic algorithms via command line
gpg --version … gpg (GnuPG) 2.1.13 … Öff. Schlüssel: RSA, ELG, DSA,
ECDH, ECDSA, EDDSA Verschlü.: IDEA, 3DES, CAST5, BLOWFISH, AES, AES192,
AES256, TWOFISH, CAMELLIA128, CAMELLIA192, CAMELLIA256 Hash: SHA1,
RIPEMD160, SHA256, SHA384, SHA512, SHA224

Start by creating key pair: gpg --gen-key

GNU Privacy Guard

OpenPGP standard 🚀

23
Imprint | Privacy Policy

https://www.gnupg.org/
https://tools.ietf.org/html/rfc4880
file:///imprint.html
file:///privacy.html

2.2.1. E-Mail Self-Defense
My suggestion: Try out OpenPGP

Create key pair, upload public key to server, send/receive
encrypted (possibly signed) e-mails

More specifically, follow
GnuPG and Thunderbird
Of course, other implementations exist

The choice is yours

Note: That guide contains instructions concerning the e-mail
robot Edward, which can reply to your encrypted (and signed)
test e-mails

Email Self-Defense 🚀

24
Imprint | Privacy Policy

https://emailselfdefense.fsf.org/en/
file:///imprint.html
file:///privacy.html

2.3. (Cryptographic) Hash Functions
 (or message digest)

Input: Message M (bit string of arbitrary length)
Output: Hash value H(M) (bit string of fixed length)

Computation is one-way: Given H(M), we cannot compute M

Collision: Different messages mapped to same hash value

Hash function 🛈

Cryptographic hash value ≈ digital fingerprint
Collision resistant (different hash values for different messages)
Weak collision resistance of hash function H

Given message M it is computationally infeasible to generate M’ such that H(M)
= H(M’)

(Computationally infeasible means that attackers should not be able to create collisions due
to resource or time limitations)

Strong collision resistance of hash function H
Computationally infeasible to generate M and M’ such that H(M) = H(M’)

25
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Hash_function
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

I suppose that you remember hash functions for fast searching. Recall that hash collisions are to be expected.

With cryptographic hash functions, collisions are a Bad Thing since hash values are supposed to serve as digital
fingerprints. Ideally, each message (or document or piece of data or code) should have its own, unique fingerprint. When
a message is changed, also its fingerprint should change. However, if a hash collision occurs and two messages
produce the same cryptographic hash value, the fingerprint becomes unusable to distinguish them.

On the slide you see two versions of collision resistance. Please take a moment to convince yourself that the strong
version implies the weak version.

Speaker notes

file:///imprint.html
file:///privacy.html

2.3.1. On Collision Resistance
: Hash values are essence of digital signatures

Consider contract between Alice and Mallory
“Mallory buys Alice’s used car for 20,000€”

Contract’s text is message M
Digital signatures of Alice and Mallory created from H(M)

Suppose H not weakly collision resistant
Mallory may be able to create M’ with price of 1€ such that H(M) = H(M’)
As H(M) = H(M’), there is no proof who signed what contract

Later ▸

Birthdays, collisions, and probability
Hash people to their birthdays (day and month, without year)
(a) Weak collision resistance: Anyone sharing your birthday?
(b) Strong collision resistance: Any pair sharing any birthday?

Birthday paradox 🛈

26
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Birthday_problem
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

The importance of weak collision resistance is best understood in the context of digital signatures, which are used to
create legally binding digital contracts proving who signed what. Without going into details of digital signatures right now,
it is sufficient to know that the contract’s text is a message M and that digital signatures on M are created from the
cryptographic hash value H(M).

Suppose Alice and Mallory agree that Mallory buys Alice’s used car for 20,000€. Both digitally sign the contract’s
message M. However, Mallory changes his mind and does not want to buy the car any longer.

If hash function H is not weakly collision resistant, Mallory may be able to create a second contract M’ which includes
the price of 1€ for Alice’s car such that H(M) = H(M’). In this situation, as digital signatures are derived from hash values,
the digital signatures of Alice and Mallory created for M are also valid for M’. Thus, Alice has no proof that Mallory signed
M in the first place.

So: If a message M is given, nobody should be able to create a second message M’ with the same hash value under
weak collision resistance.

For strong collision resistance, nobody should be able to create any collision at all, even if those collisions only occur for
messages that look like gibberish without practical value.

A different angle on collision resistance is provided by the following birthday analogy. Consider the hash function
mapping each person to his or her month and day of birth. Essentially, there are 366 different hash values (including
February 29), and a collision occurs when two people share the same birthday.

Suppose you are in class. When you wonder whether some of your fellow students shares your birthday, you consider
weak collision resistance. In contrast, when you ask whether any pair of students shares the same birthday, you
consider strong collision resistance.

For simplicity, ignore leap years and consider just 365 different birthdays, all with the same probability. I’m confident that
for a class of 30 students you can compute the probabilities of (a) somebody sharing your birthday as well as (b) any

Speaker notes

file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

pair sharing a common birthday. If you do the math for the first time, you may be surprised by the high probability in
case (b), which is known as the birthday paradox (whose essence is the fact that the number of pairs grows
quadratically, about which you can read more at Wikipedia). As the probability of case (b) is larger than that of case (a),
it is harder to defend against case (b). Thus, hash functions targeting strong collision resistance must be “stronger” than
those offering weak collision resistance.

file:///imprint.html
file:///privacy.html

2.3.2. Sample Hash Applications
Avoidance of plain text passwords
Integrity tests
Digital signatures

27
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.3.3. Sample Hash Standards
MD4, MD5, SHA-1: Broken
SHA-1, SHA-2: Designed by NSA

Bruce Schneier, 2004: “

”
Cryptographic hashing is extremely difficult, experts in 2006:

“
”

2017: SHA-1 broken (deprecated by NIST in 2011)
Attack called SHAttered, see if you are interested

 (aka Keccak), standard since 2015
Winner of public competition from 2007 to 2012

Algorithms from the NSA are considered a
sort of alien technology: They come from a superior race with no
explanations 🚀

Joux says that we do not understand what we are doing and that we do not
really know what we want; there is agreement from all the panelists. 🚀

https://shattered.io/ 🚀

SHA-3 🚀

28
Imprint | Privacy Policy

https://www.schneier.com/essays/archives/2004/08/cryptanalysis_of_md5.html
https://www.proper.com/lookit/hash-futures-panel-notes.html
https://shattered.io/
https://en.wikipedia.org/wiki/SHA-3
file:///imprint.html
file:///privacy.html

2.3.4. On Resource Limitations
Previous slide mentions

In 2017, researchers demonstrated that SHA-1 is broken

Sample results
Brute force attack would have taken about 12,000,000 GPU years
Researchers exploited weaknesses in SHA-1

Their attack took 6,500 years of single-CPU computations and 110 years of
single-GPU computations
Computationally feasible on Google cloud infrastructure as of 2017

SHAttered 🚀

29
Imprint | Privacy Policy

https://shattered.io/
file:///imprint.html
file:///privacy.html

2.3.5. Sample Message and Fingerprints

Sample hash values with GnuPG
gpg --print-md SHA1 alice.txt

alice.txt: 6FC1 F66C 598B D776 BA37 1A5C 2605 06CB 4CF9 0B89

gpg --print-md SHA256 alice.txt

alice.txt: 84E500CB 388EE799 05F50557 43C5481B 08B0BF17 1A2AE843
F4A197AD 2BA68D2E

(Besides, specialized hashing tools exist, e.g.,
sha256sum)

Hi Bob,

let's get started tomorrow!

Best wishes

Alice

30
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.4. Quiz

1. Select correct statements.

 Cryptographic hash functions are a subclass of hash functions that aim for collision resistance.

 Hash values can be computed by anyone (including attackers) as hash functions are publicly standardized.

 Strong collision resistance implies weak collision resistance, i.e., every hash function that is strongly collision resistant is also weakly collision resistant.

 Hash functions that are not strongly collision resistant are useless for digital signatures.

Cryptographic hashing is a wonder.

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

31
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.5. Symmetric Encryption
Sender and recipient share secret key, KAB
Encryption, by function E, of plaintext message M with
KAB into ciphertext C

C = E(KAB, M) (abbreviated to KAB (M) for agreed E)
Bits of M and KAB are mixed and shuffled using reversible functions (e.g., XOR,
bit shift)
Simplest, yet provably secure case: with XOR of random bit
string and M

Decryption, by function D, with same key KAB
M = D(KAB, E(KAB, M))
Notice: Need to exchange secret key ahead of time

Typical symmetric algorithms: ,

One-time pad 🚀

AES 🚀 3DES 🚀

32
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Triple_DES
file:///imprint.html
file:///privacy.html

2.6. Intuition of Asymmetric Encryption
Participants own key pairs

Private key, e.g., KB-: secret
Public key, e.g., KB+: public / published
En- and decryption based on “hard” mathematical problems

Think of key pair as safe/vault with numeric key pad
Open safe = public key

Everybody can deposit messages and lock the safe

Opening combination = private key
Only the owner can open the safe and retrieve messages

33
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

While symmetric encryption with shared keys, in particular the one-time pad, may seem intuitively clear, asymmetric
cryptography requires some thought. Every participant needs a key pair, which consists of a private key and a public
key. As the names suggest, a private key needs to be kept secret and must only be accessible by its owner, whereas the
public key can be published, e.g., on web servers or special key servers.

This slide offers an analogy of public key cryptography with physical safes, which might help to convey essential ideas:
The public key of Alice is used by others to encrypt messages to her, while she uses her private key to decrypt them.
Similarly, she might offer opened safes in the real world, into which messages can be placed and which can be locked
by everyone. Only Alice is able to open the safe using its opening combination to retrieve and read contained messages.
Thus, the opening combination corresponds to her private key.

A noteworthy challenge of asymmetric cryptography, which is mentioned on the next slide, is the reliable distribution of
public keys: How does Bob know that he really obtained Alice’s public key and not one created by Mallory and
distributed in her name? Or in the above analogy: How does he make sure that he places his messages into Alice’s safe
and not into one owned by Mallory to which Mallory attached the name tag “Alice”? Answers to this question are
provided under the term “public key infrastructure”, and they frequently rely on the idea that Bob needs to verify a
fingerprint of Alice’s public key through an out-of-band communication channel. This highly relevant, fascinating, and
challenging topic is beyond the scope of this presentation, though.

Speaker notes

file:///imprint.html
file:///privacy.html

2.7. Asymmetric Encryption
Participants own key pairs

Private key, e.g., KB-: secret
Public key, e.g., KB+: public / published

Encryption of message for Bob with Bob’s public key
C = E(KB+, M) = KB+ (M)
Notice: No secret key exchange necessary

Decryption with Bob’s secret key
D(KB-, KB+(M)) = KB-(C) = M
Notice: Only Bob can do this

Challenge: Reliable distribution of public keys
Solution: Certificates in , PKIPublic Key Infrastructure 🚀

34
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Public_key_infrastructure
file:///imprint.html
file:///privacy.html

2.7.1. Sample Asymmetric Algorithms
 (1976)

Used, e.g., in IPsec, SSL/TLS, ,
, June 2015: SSLv3 MUST NOT be used

 (Rivest, Shamir, Adleman 1978)
 2002, most famous, PGP, GnuPG

 (1985)
Based on Diffie-Hellman, GnuPG and newer PGP variants

Others more recently, e.g.:
 with shorter keys, also GnuPG

 in 2022 based on since 2016
One of them, SIKE, found to be insecure in August 2022

Diffie-Hellman Key Exchange 🚀
Tor 🚀 OTR 🚀

RFC 7568 🚀

RSA 🚀
Turing award 🚀

ElGamal 🚀

Elliptic curves 🚀
Post-quantum cryptography 🚀

4 standards 🚀 NIST competition 🚀

35
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://www.torproject.org/
https://otr.cypherpunks.ca/
https://tools.ietf.org/html/rfc7568
https://en.wikipedia.org/wiki/RSA_(algorithm)
https://en.wikipedia.org/wiki/Turing_Award
https://en.wikipedia.org/wiki/ElGamal_encryption
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Post-quantum_cryptography
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://en.wikipedia.org/wiki/NIST_Post-Quantum_Cryptography_Standardization
file:///imprint.html
file:///privacy.html

2.7.2. Hybrid End-to-End Encryption

“E
nd

-t
o-

En
d

En
cr

yp
tio

n
(H

yb
rid

)”
 b

y
N

oa
h

Lü
ck

e,
 M

or
itz

 v
an

 d
en

 B
er

g,
An

to
n

Le
vk

au
, N

ic
k

Vr
ba

n
an

d
Ja

nn
es

 W
er

k
un

de
r

;
co

nv
er

te
d

fro
m

CC

 B
Y-

SA
 4

.0
Gi

tL
ab

36
Imprint | Privacy Policy

https://creativecommons.org/licenses/by-sa/4.0/
https://gitlab.com/oer/figures/blob/master/Internet/Hybrid-End-to-End-Encryption.pdf
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

This figure was created by students in the context of the course Communication and Collaboration Systems (CACS) in
2020.

In the simplistic and non-realistic protocol shown here, Alice obtains Bob’s public key from some server. This server
could be an ordinary web server (e.g., Bob’s homepage), a separate key server, or a server used in the background of
her application, e.g., in case of Signal or WhatsApp. Then, she creates a symmetric encryption key, encrypts this with
Bob’s public key and sends the result to Bob. Bob uses his private key to decrypt the message and obtains the
symmetric key of Alice. Now, Alice and Bob share a symmetric key that can be used to encrypt subsequent
communication.

To appreciate what might be involved in real protocols, first note that only Bob’s private key is used here. So, Mallory
could pretend to be Alice and send a symmetric key in her name. Second, for messaging we are usually interested in a
property called . Briefly, this means that even if long-term asymmetric keys were broken, attackers
should still need to break the encryption of individual messages. Clearly, the shown protocol does not satisfy this
property: Suppose attacker Eve records years of communication and later somehow obtains Bob’s private key. Then,
Eve can first decrypt the messages containing the symmetric keys and afterwards everything else.

To guarantee forward secrecy, protocols usually involve some form of Diffie-Hellman key exchanges to set up shared
symmetric keys, which are changed frequently. A famous example used for messaging is the

 which is part of the .

Speaker notes

forward secrecy 🚀

double ratched
algorithm 🚀 Signal protocol 🚀

file:///imprint.html
file:///privacy.html
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Double_Ratchet_Algorithm
https://en.wikipedia.org/wiki/Signal_Protocol

2.7.3. GnuPG: Hybrid Encryption
Create asymmetric key pair

gpg --gen-key

Various options/alternatives

Encryption for Bob
gpg -e -a -r Bob file

Creates file.asc; more precisely:
Creates random secret key KAB
Symmetric encryption of file with KAB

Specific algorithm obtained from Bob’s public key

Asymmetric encryption of KAB with KB+
Beware! No naïve encryption, but, e.g., #1

Result: KB+(KAB) + KAB(file)
(“+” between ciphertexts denotes string concatenation)

PKCS 🚀

37
Imprint | Privacy Policy

https://tools.ietf.org/html/rfc8017
file:///imprint.html
file:///privacy.html

3. Message Integrity

39
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.1. Situation and Goal
Alice sends message M to Bob

(Parts of) Network controlled by unknown parties (Eve and
Mallory)

Goals of integrity
Bob is sure that M came from Alice

Notice: Need authentication ()!

Bob can detect modifications to M
proof of identity ▸

Non-goals: Alice cannot be sure
that no third party receives M
that Bob receives M
that Bob receives M in unchanged form

40
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.2. General Idea
Alice sends message along with its fingerprint

: A hash value is not good enough
Instead: Use some ingredient that is unknown to the attacker
◂ Hint

Bob receives message and fingerprint and verifies
whether both match

If message changed by Mallory, he cannot produce a matching
fingerprint

Typical techniques
Message authentication codes

E.g., Alice and Bob share secret KAB, concatenate that to message before
hashing

Digital signatures (next slides)

41
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.3. Digital Signatures
Based on asymmetric cryptography

En- and decryption reversed
Basic idea

Signature created by encryption with private key: KA-(M)
Only Alice can create this!

Verification via decryption with public key: D(KA+, KA-(M))
Everyone can do this as public key is public!

Practice: Encrypt hash value of M, e.g., KA-(SHA-3(M))
Recall

Performance
Hash collisions

42
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.3.1. Some Details of Digital Signatures
(1/2)

Signing of M by Alice with private key KA-
Signature S = KA-(h(M))

Only Alice can do this

Transmit signed message [M]KA-
 = M + S = message + signature

(“+” is concatenation)

43
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.3.2. Some Details of Digital Signatures
(2/2)

[M] received by Bob
Verification whether [M] sent by Alice and unchanged
along the way

Split [M]: [M] = M’ + S’
Hash M’: H = h(M’)
Decrypt S’: H’ = KA+(S’)

Bob needs public key of Alice to do
this
Everyone can do this

Verify H = H’

44
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.3.3. GnuPG: Digital Signatures
gpg --sign -a -b alice.txt

Creates digital signature alice.txt.asc for input
alice.txt

gpg --verify alice.txt.asc

Expects to be verified content as alice.txt
Verifies signature
Frequently used to verify integrity of downloads

45
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.4. Electronic Signatures
“Signatures” of varying legal impact in IT environments

Different types, e.g., simple (e.g., sender’s name in e-mail),
advanced (digital signature as discussed above), qualified
Qualified electronic signatures may replace paper based
signatures (e.g., dismissal, invoice)

Subset of advanced electronic signatures
Based on qualified certificates (with qualified electronic signature, issued by
accredited organization; law prescribes rules concerning infrastructure and
processes)
Created on secure signature-creation devices (may store qualified
certificate; additional reader necessary)

nPA 🛈

46
Imprint | Privacy Policy

https://de.wikipedia.org/wiki/Elektronischer_Personalausweis
file:///imprint.html
file:///privacy.html

4. OS Context

48
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.1. Basic OS Security Services

49
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.1.1. Service Overview (1/2)
Rights management, authorization

Discussed already:
What is Bob allowed to do?

Logging
Who did what when?
(Not considered here)

Basic cryptographic services
Offering selection of above techniques: a/symmetric techniques,
hashing

Access rights

50
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Processes.html#slide-access-rights
file:///imprint.html
file:///privacy.html

4.1.2. Service Overview (2/2)
Identification/Authentication

Identification: Claim of identity
I’m Bob …

Authentication: Proof of identity (more on subsequent slides)
My password is “p@ssw0rd”

(Bad idea, easily broken!)

Integrity protection
E.g., installation and updates of software under GNU/Linux with
apt 🚀

51
Imprint | Privacy Policy

https://superuser.com/questions/990143/how-does-apt-get-check-the-integrity-of-the-downloaded-files-it-receives
file:///imprint.html
file:///privacy.html

4.1.3. Authentication
Proof of identity

Something the individual knows
Password, PIN, answer to security question

Something the individual possesses
Private key (on smartcard or elsewhere), iTAN

Something the individual is
Static biometrics, e.g., fingerprint, iris scan

Something the individual does
Dynamic biometrics, e.g., voice or typing pattern

Necessary prerequisite to enforce
Who is allowed to perform what operation on what resource?

access rights

52
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Processes.html#slide-access-rights
file:///imprint.html
file:///privacy.html

4.1.4. Two-Factor Authentication
Combinations of above categories

Physical banking
Bank card (possession) plus PIN (knowledge)

Online banking
Password for login (knowledge) plus mTAN or iTAN (possession)

Beware: Must keep factors separate
Do not record PIN on card
Do not perform online banking on device that receives mTAN

53
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.2. Key Security Best Practices
Consult others
Adopt a holistic risk-management perspective
Deploy firewalls and make sure they are correctly
configured
Deploy anti-virus software
Keep all your software up to date
Deploy an IDS
Assume all network communications are vulnerable
… (see Sec. 11.8 in)[Hai19]

54
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

5. Conclusions

56
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

5.1. Summary
Security is complex, requires design and management
Cryptography provides foundation for lots of security
mechanisms

Don’t implement cryptographic protocols yourselves!
Use proven tools, e.g., GnuPG

Asymmetric crypto with key pairs
Public key for encryption and signature verification
Private key for decryption and signature creation

Hash functions and digital signatures for integrity

57
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Bibliography
 Hailperin, Operating Systems and Middleware – Supporting Controlled Interaction,

revised edition 1.3.1, 2019.
 Kaufman, Perlman & Speciner, Network Security: Private Communication in a

Public World, Second Edition, Prentice Hall Press, 2002.
 Lechtenbörger, Zur Sicherheit von De-Mail, Datenschutz und Datensicherheit 35(4),

268-269 (2011).
 Saltzer & Schroeder, The protection of information in computer systems,

Proceedings of the IEEE 63(9), 1278-1308 (1975).

[Hai19]
https://gustavus.edu/mcs/max/os-book/

[KPS02]

[Lec11]

[SS75]

http://web.mit.edu/Saltzer/www/publications/protection/

58
Imprint | Privacy Policy

https://gustavus.edu/mcs/max/os-book/
http://web.mit.edu/Saltzer/www/publications/protection/
file:///imprint.html
file:///privacy.html

License Information
This document is part of an course
on Operating Systems.

 under .

Except where otherwise noted, the work “OS11: Security”, © 2017-2023
, is published under the

.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other
(trade-) marks (e.g., “Creative Commons” itself) remain with their
respective holders.

Open Educational Resource (OER)
Source code and source files are available on

GitLab free licenses

Jens Lechtenbörger Creative Commons license
CC BY-SA 4.0

No warranties are given. The license may not give you all of the permissions
necessary for your intended use.

Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
file:///imprint.html
file:///privacy.html

59
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

