
OS09: Virtual Memory II
Based on Chapter 6 of
(for this presentation)

Computer Structures and Operating Systems 2023
Dr. Jens Lechtenbörger ()

[Hai19]
Usage hints

License Information

Data Science: Machine Learning and Data Engineering (Prof. Gieseke)
Dept. of Information Systems
WWU Münster, Germany

1
Imprint | Privacy Policy

https://www.uni-muenster.de/en/
https://www.ercis.org/
https://oer.gitlab.io/hints.html
https://www.wi.uni-muenster.de/department/dasc
https://www.wi.uni-muenster.de/
https://www.uni-muenster.de/en/
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

To toggle these notes, press v
If a slide contains audio, notes might show transcript

Press ? for key bindings (in particular, a, o, n, p, Ctrl-Shift-f)
Presentations support two different PDF formats, see

Both hyperlinked on index page
Concise PDF format (replace .html and whatever follows in with .pdf)
Print browser view to PDF (add ?print-pdf after .html, then print to PDF;)

If you find the amount of outgoing links to be distracting, see
Add ?hidelinks (maybe with a number) after .html

See for other non-obvious features

Speaker notes

usage notes

address bar
suggested settings

usage notes

usage notes

file:///imprint.html
file:///privacy.html
https://oer.gitlab.io/hints.html
https://en.wikipedia.org/wiki/Address_bar
https://revealjs.com/pdf-export/
https://oer.gitlab.io/hints.html
https://oer.gitlab.io/hints.html

1. Introduction

3
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

 (Wk 20)
 (Wk 21)

 (Wk 21)
 (Wk 23)

 (Wk 24)
 (Wk 25)

 (Wk 25)
 (Wk 25)

 (Wk 26)

 (Wk 26)
 (Wk 27)

 (Wk 28)

1.1. OS Plan
OS Overview
OS Introduction
Interrupts and I/O
Threads
Thread Scheduling
Mutual Exclusion (MX)
MX in Java
MX Challenges
Virtual Memory I

Virtual Memory II
Processes
Security

4
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Introduction.html
file:///builds/oer/OS/public/Operating-Systems-Introduction.html
file:///builds/oer/OS/public/Operating-Systems-Interrupts.html
file:///builds/oer/OS/public/Operating-Systems-Threads.html
file:///builds/oer/OS/public/Operating-Systems-Scheduling.html
file:///builds/oer/OS/public/Operating-Systems-MX.html
file:///builds/oer/OS/public/Operating-Systems-MX-Java.html
file:///builds/oer/OS/public/Operating-Systems-MX-Challenges.html
file:///builds/oer/OS/public/Operating-Systems-Memory-I.html
file:///builds/oer/OS/public/Operating-Systems-Memory-II.html
file:///builds/oer/OS/public/Operating-Systems-Processes.html
file:///builds/oer/OS/public/Operating-Systems-Security.html
file:///imprint.html
file:///privacy.html

1.2. Today’s Core Questions
How can the size of page tables be reduced?
How can address translation be sped up?
How does the OS allocate frames to processes?

5
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.3. Learning Objectives
Explain paging, swapping, and thrashing
Discuss differences of different types of page tables
Explain role of TLB in address translation
Apply page replacement with FIFO, LRU, Clock

6
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.4. Retrieval Practice

7
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.4.1. Recall: Hash Tables
 = data structure with search in O(1) on

average
Taught in Data Structures and Algorithms

What are hash collisions, buckets, chaining?

Hash table 🛈

8
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Hash_table
file:///imprint.html
file:///privacy.html

1.4.2. Previously on OS …

What is responsible for address translation?

How ? How many exist?
What happens upon ?
What is ?
The .

What is a virtual address, how is it related to page
tables?

piece of hardware

large are page tables
page misses

demand loading
size of page tables poses a challenge

9
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Memory-I.html#slide-main-concepts
file:///builds/oer/OS/public/Operating-Systems-Memory-I.html#slide-mmu
file:///builds/oer/OS/public/Operating-Systems-Memory-I.html#slide-page-table-sizes
file:///builds/oer/OS/public/Operating-Systems-Memory-I.html#slide-page-fault-handler
file:///builds/oer/OS/public/Operating-Systems-Memory-I.html#slide-demand-loading
file:///builds/oer/OS/public/Operating-Systems-Memory-I.html#slide-page-table-sizes
file:///imprint.html
file:///privacy.html

1.4.3. Selected Questions

1. Select correct statements about virtual addresses.
 Virtual addresses exhibit a hierarchical structure.

 The size of the virtual address space is defined by the CPU architecture, not the size of physical memory.

 The OS maintains a page table to keep track of what data resides where in RAM.

 The number of address bits determines the size of the virtual address space.

2. Select correct statements related to paging.
 Page tables provide mappings between pages and frames.

 The MMU maintains page tables to keep track of RAM locations of pages.

 Page faults are managed by an interrupt handler.

 With paging, offsets remain unchanged.

Memorizing memory

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

10
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Table of Contents
1. Introduction
2. Multilevel Page Tables
3. Inverted Page Tables and Hardware Support
4. Policies
5. Conclusions

11
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2. Multilevel Page Tables

13
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.1. Core Idea
So far: Virtual address is hierarchical object consisting
of page number and offset
Now multilevel page tables: Interpret page table as
tree with fixed depth, i.e., a fixed number of multiple
levels

(Visualizations on next two slides)
For n levels, split page number into n smaller parts

Two-level for 32 bits: Split 20 bits into two parts with 10 bits each

To traverse page table (tree), use one part on each level

Aside: On 64-bit machines, Linux introduced 5-level
tables as default on 2019-09-16 🚀

14
Imprint | Privacy Policy

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=18ec1eaf58fbf2d9009a752a102a3d8e0d905a0f
file:///imprint.html
file:///privacy.html

2.2. Two-Level Page Table

Note: Page table contains entries of an ordinary page table. Previously, valid bit and page frame
numbers were shown in columns; here, they are shown in rows.

“I
A-

32
 tw

o-
le

ve
l p

ag
e

ta
bl

e”
 b

y
 u

nd
er

; F
ra

m
e

nu
m

be
rs

 a
nd

 v
al

id
 b

its
 a

dd
ed

 to
 a

nd
th

ird
 la

ye
r r

em
ov

ed
 fr

om

 o
f

 b
y

M
ax

H
ai

lp
er

in
 u

nd
er

.

Je
ns

 L
ec

ht
en

bö
rg

er
CC

 B
Y-

SA
 4

.0
Fi

gu
re

 6
.1

3
[H

ai
17

]
CC

 B
Y-

SA
 3

.0
So

ur
ce

 a
t G

itL
ab

.

15
Imprint | Privacy Policy

https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0613.pdf
https://creativecommons.org/licenses/by-sa/3.0/
https://gitlab.com/oer/figures/blob/master/OS/hail_f0613_with_embedded_frame_nos.odg
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

This figure shows a two-level page table as used in Intel’s 32-bit processor architecture IA-32. The entry point to this
two-level page table is called page directory and can point to 1024 chunks of the page table, each of which can point to
1024 page frames. Note that with 1024 entries of 4 B each, the page directory as well as chunks of the page table fit
exactly into pages and frames of 4 KiB. The leftmost pointer leading from the leftmost chunk of the page table points to
the frame holding page 0. Each entry can also be marked invalid, indicated by an X in this diagram. For example, the
second entry in the first chunk of the page table is invalid, showing that no frame holds page 1. The same principle
applies at the page directory level as well; in this example, no frames hold pages 1024-2047, so the second page
directory entry is marked invalid.

Speaker notes

file:///imprint.html
file:///privacy.html

2.2.1. Two-Level Address Translation

“F
ig

ur
e

6.
14

 o
f

” b
y

M
ax

 H
ai

lp
er

in
 u

nd
er

; c

on
ve

rt
ed

fro
m

[H

ai
17

]
CC

 B
Y-

SA
 3

.0
Gi

tH
ub

16
Imprint | Privacy Policy

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0614.pdf
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

This diagram shows the core of IA-32 paged address mapping. As explained previously, virtual addresses are
understood as hierarchical objects which are divided into a 20-bit page number and 12-bit offset within the page; the
latter 12 bits are left unchanged by the translation process. Due to the two-level nature of the page table, the 20-bit page
number is subdivided into a 10-bit page directory index and a 10-bit page table index. Each index is multiplied by 4, the
number of bytes in each entry, and then added to the base physical address of the corresponding data structure,
producing a physical memory address from which the entry is loaded. The base address of the page directory comes
from a special register, whereas the base address of the page table comes from the page directory entry.

Speaker notes

file:///imprint.html
file:///privacy.html

3. Inverted Page Tables
and Hardware Support

18
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.1. Inverted Page Tables
Recall: Page tables can be huge, per process
Key insights to reduce amount of memory:

Number of frames is (usually) much smaller than aggregate
number of pages
Thus, let us record information per frame, not per page and
process

(For each frame, what page of what process is currently contained?)

Obtain frame for page via hashing of page number
PowerPC, UltraSPARC, IA-64

19
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.1.1. Example
Simplistic example, 4 frames, hashing via modulo 4

(Inverted page table below based on Fig. 6.15
of ; represents main memory situation
shown to the right)
E.g., page 0: 0 mod 4 = 0; thus look into row 0,
find that page 0 is contained in frame 1

Valid Page Process Frame
1 0 42 1
1 1 42 0
1 6 42 3
0 X X X

“F
ig

ur
e

6.
10

 o
f

” b
y

M
ax

H
ai

lp
er

in
 u

nd
er

;

co
nv

er
te

d
fro

m

[H
ai

17
]

CC
 B

Y-
SA

 3
.0

Gi
tH

ub

[Hai19]

20
Imprint | Privacy Policy

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0610.pdf
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

Consider the simplified and simplistic inverted page table shown here capturing the memory situation of the process
shown to the right, which is called process 42. Note that in reality, RAM would contain pages of several processes.

Here just 4 frames of RAM are available, and hashing of page number n is computed as n modulo 4.

When, for example, an instruction executed by the CPU on behalf of process 42 touches a virtual address located in
page 0, hashing is used to compute 0 mod 4 = 0, which indicates that the first table entry needs to be accessed (as
counting starts from 0). This entry shows that page 0 is located in frame 1, and the physical address can be built as
usual.

As a side remark, if you read elsewhere about inverted page tables please note that you may find a slightly different
scheme where the frame number is not included in table entries: If the table contains exactly one entry per frame of
RAM, frame numbers can be omitted and instead entry number n would indicate the contents of frame number n. E.g.,
entry 2 here would not contain a frame number but directly indicate that frame 2 contains page 6 of process 42.

Speaker notes

file:///imprint.html
file:///privacy.html

3.1.2. Observations
Constant table size

Proportional to main memory size
Independent of number of processes

One entry per frame is sufficient

Entries are large
Page numbers included (hash collisions)
Process IDs included (hash collisions)
Pointers for overflow handling necessary (not shown above)
If there is one entry per frame, the frame number does not need to
be included (implicit as entry’s number)

Side note: Efficient use in practice is hard
See if you are interestedcomments by Linus Torvalds 🚀

21
Imprint | Privacy Policy

https://yarchive.net/comp/linux/page_tables.html
file:///imprint.html
file:///privacy.html

3.2. Hardware Support for Address
Translations

Lots of architectures support page tables in hardware
Multilevel and/or inverted page tables
Page table walker does translation in hardware

Architecture specifies page table structure
For multilevel page tables, special register stores start address of page directory

Special cache to reduce translation latency, the TLB
(next slide)

22
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.2.1. Translation Lookaside Buffer (TLB)
Access to virtual address may require several memory
accesses → Overhead

Access to page table (one per level)
Access to data

Improvement:
Special cache, called TLB, for page table entries

Recently used translations of page numbers to frame numbers

 searches in TLB first to build physical address
Note: Search for page, not entire virtual address
If not found (TLB miss): Page table access

Note: Context switch may require TLB flush → Overhead
Reduced when entries have address space identifier (ASID)

See if you are interested in details

Caching 🛈

MMU

[Hai19]

23
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Hardware_cache
file:///builds/oer/OS/public/Operating-Systems-Memory-I.html#slide-mmu
file:///imprint.html
file:///privacy.html

4. Policies

25
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.1. Terminology
To page = to load a page of data into RAM

Managed by OS

Paging causes and may lead to
as discussed next
Paging policies, to be discussed afterwards, aim to
reduce both phenomena

swapping ▸ thrashing ▸

26
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.1.1. Swapping
Under-specified term
Either (desktop OSs)

Usual paging in case of page faults
Page replacement: Swap one page out of frame to disk, another one in

Discussed

Or (e.g., mainframe OSs)
Swap out entire process (all of its pages and all of its threads)

New for its threads: swapped/suspended
No thread can run as nothing resides in RAM

Swap in later, make process/threads runnable again
(Not considered subsequently)

subsequently ▸

state

27
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Scheduling.html#slide-thread-states
file:///imprint.html
file:///privacy.html

4.1.2. Thrashing
Permanent swapping without progress

Another type of
Time wasted with overhead of swapping and context switching

Typical situation: no free frames
Page faults are frequent

OS blocks thread, performs page replacement via swapping
After context switch to different thread, again page fault

More swapping

Reason: Too many processes/threads
Mainframe OSs may swap out entire processes then

Control so-called multiprogramming level (MPL)
Enforce upper bound on number of active processes

Desktop OSs let users deal with this

livelock

28
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Interrupts.html#slide-livelocks
file:///imprint.html
file:///privacy.html

4.2. Fetch Policy
General question: When to bring pages into RAM?
Popular alternatives

Demand paging (contrast with)
Only load page upon page fault
Efficient use of RAM at cost of lots of page faults

Prepaging
Bring several pages into RAM, anticipate future use
If future use guessed correctly, fewer page faults result

Also, loading a random hard disk page into RAM involves
Such delays are reduced when neighboring pages are read in one operation
(Even for SSDs, multiple random I/O operations are slower than a single sequential I/O
operation of the same size as each operation comes with overhead)

demand loading

rotational delay 🛈

29
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Memory-I.html#slide-demand-loading
https://www.computerhope.com/jargon/r/rotadela.htm
file:///imprint.html
file:///privacy.html

4.2.1. Prepaging ideas
Clustered paging, read around

Do not read just one page but a cluster of neighboring pages
Can be turned on or off in system calls

OS and program start
OSs may monitor page faults, record and use them upon next
start to pre-load necessary data

Linux with
Windows with

readahead system call 🚀
Prefetching and SuperFetch 🚀

30
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Readahead
https://en.wikipedia.org/wiki/Prefetcher
file:///imprint.html
file:///privacy.html

4.3. Replacement Policy
What frame to re-use when a page fault occurs while all
frames are full?
Recall goal: Keep in RAM
Local vs global replacement

Local: Replace within frames of same process
When to in- or decrease resident set size?

Global: Replace among all frames

working sets

31
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Memory-I.html#slide-working-set
file:///imprint.html
file:///privacy.html

4.3.1. Sample Replacement Policies
OPT: Hypothetical optimal replacement

Replace page that has its next use furthest in the future
Needs knowledge about future, which is unrealistic

FIFO: First In, First Out replacement
Replace oldest page first

Independent of number/distribution of references

LRU: Least Recently Used replacement
Replace page that has gone the longest without being accessed

Based on principle of locality, upcoming access unlikely

Clock (second chance)
Replace “unused” page

Use 1 bit to keep track of “recent” use

32
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.3.2. Replacement Examples

“F
ig

ur
e

6.
19

 o
f

” b
y

M
ax

 H
ai

lp
er

in
 u

nd
er

; c

on
ve

rt
ed

 fr
om

[H

ai
17

]
CC

 B
Y-

SA
3.

0
Gi

tH
ub

33
Imprint | Privacy Policy

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0619.pdf
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

In this comparison of the OPT, LRU, and FIFO replacement policies, each pair of boxes represents the two frames
available on an unrealistically small system. The numbers within the boxes indicate which page is stored in each frame.
The numbers across the top are the page reference sequence, and the letters h and m indicate hits and misses. In this
example, LRU performs better than FIFO, in that it has one more hit. OPT performs even better, with three hits.

Speaker notes

file:///imprint.html
file:///privacy.html

4.3.3. Clock (Second Chance)
Frames arranged in cycle, pointer to next frame

(Naming: Pointer
as hand of clock)
Pointer “wraps
around” from
“last” frame to
“first” one

Use-bit per frame
Set to 1 when page
referenced/used

34
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.3.4. Beware of the Use Bit
Use-bit may be part of hardware support
Use-bit set to 0 when page swapped in
Under demand paging, use-bit immediately set to 1
due to reference

Following examples assume that page is referenced for use
Thus, use-bit is 1 for new pages

Under prepaging, use-bit may stay 0

35
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.3.5. Clock (Second Chance): Algorithm
If page hit

Set use-bit to 1
Keep pointer unchanged

If page fault
Check frame at pointer
If free, use immediately, advance pointer
Otherwise

If use-bit is 0, then replace; advance pointer
If use-bit is 1, reset bit to 0, advance pointer, repeat (Go to “Check frame at
pointer”)
(Naming: In contrast to FIFO, page gets a second chance)

36
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.3.6. Clock (Second Chance): Animation
Consider reference of page 7 in

All frames full, page 7 not present in RAM
Page fault

Frame at pointer is 2,
page 44 has use bit of 1

Reset use bit to 0,
advance pointer to frame
3

Frame at pointer is 3,
page 3 has use bit of 0

Replace page 3 with 7,
set use bit to 1 due to
reference
Advance pointer to frame
4

◂ previous situation

37
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.3.7. Clock: Different Animation
Situation

Four frames of main memory, initially empty
Page references: 1, 3, 4, 7, 1, 2, 4, 1, 3, 4

“P
ag

e
re

pl
ac

em
en

t e
xa

m
pl

e
w

ith
 C

lo
ck

al
go

rit
hm

” b
y

Ch
ris

to
ph

 Il
se

 u
nd

er

;
fro

m
 CC

0
1.

0
Gi

tL
ab

38
Imprint | Privacy Policy

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/blob/master/OS/clock-steps-2.gif
file:///imprint.html
file:///privacy.html

4.3.8. More Replacement Examples

39
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

The layout of this diagram mirrors the one of Fig. 6.19 but is extended to four frames. For Clock, demand paging is
assumed; the arrow shows the pointer position, and “*” indicates a use-bit of 1.

Let’s see how Clock works. Consider the 6th page reference, which is supposed to bring page 2 into RAM under the
situation where

all frames are full,
all use-bits are 1,
the pointer is at frame 0, where page 1 has a use bit of 1.

Following Clock’s steps, the use-bit of page 1 is reset to 0, and the pointer is advanced to frame 1. Page 3 in frame 1
has a use-bit of 1, which is reset to 0, and the pointer is advanced. That way all use-bits are reset, before the pointer
points to page 1 in frame 0 again. This time, the use-bit is 0, hence the contents of frame 0 are replaced with page 2,
and the pointer is advanced once more. As we consider demand paging, an access into page 2 occurs, which sets the
use-bit to 1.

Speaker notes

file:///imprint.html
file:///privacy.html

4.4. Self-Study Task
Perform the following task in .
Apply the page replacement algorithms OPT, FIFO, LRU, and Clock (Second Chance) for
four frames of main memory to the following stream of page references under demand
paging: 1, 3, 4, 7, 1, 2, 4, 1, 3, 4
Verify your results against the and raise any questions that you may
have.

Learnweb

◂ previous slide

40
Imprint | Privacy Policy

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=68583#section-11
file:///imprint.html
file:///privacy.html

5. Conclusions

42
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

5.1. Summary
Virtual memory provides abstraction over RAM and
secondary storage

Paging as fundamental mechanism for flexibility and isolation

Page tables managed by OS
Hardware support via MMU with TLB
Management of “necessary” pages is complex

Tasks include prepaging and page replacement

43
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Bibliography
 Hailperin, Operating Systems and Middleware – Supporting Controlled Interaction,

revised edition 1.3.1, 2019.
[Hai19]

https://gustavus.edu/mcs/max/os-book/

44
Imprint | Privacy Policy

https://gustavus.edu/mcs/max/os-book/
file:///imprint.html
file:///privacy.html

License Information
This document is part of an course
on Operating Systems.

 under .

Except where otherwise noted, the work “OS09: Virtual Memory II”, ©
2017-2023 , is published under the

.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other
(trade-) marks (e.g., “Creative Commons” itself) remain with their
respective holders.

Open Educational Resource (OER)
Source code and source files are available on

GitLab free licenses

Jens Lechtenbörger Creative
Commons license CC BY-SA 4.0

No warranties are given. The license may not give you all of the permissions
necessary for your intended use.

Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
file:///imprint.html
file:///privacy.html

45
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

