
OS06: MX in Java
Based on Chapter 4 of
(for this presentation)

Computer Structures and Operating Systems 2023
Dr. Jens Lechtenbörger ()

[Hai19]
Usage hints

License Information

Data Science: Machine Learning and Data Engineering (Prof. Gieseke)
Dept. of Information Systems
WWU Münster, Germany

1
Imprint | Privacy Policy

https://www.uni-muenster.de/en/
https://www.ercis.org/
https://oer.gitlab.io/hints.html
https://www.wi.uni-muenster.de/department/dasc
https://www.wi.uni-muenster.de/
https://www.uni-muenster.de/en/
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

To toggle these notes, press v
If a slide contains audio, notes might show transcript

Press ? for key bindings (in particular, a, o, n, p, Ctrl-Shift-f)
Presentations support two different PDF formats, see

Both hyperlinked on index page
Concise PDF format (replace .html and whatever follows in with .pdf)
Print browser view to PDF (add ?print-pdf after .html, then print to PDF;)

If you find the amount of outgoing links to be distracting, see
Add ?hidelinks (maybe with a number) after .html

See for other non-obvious features

Speaker notes

usage notes

address bar
suggested settings

usage notes

usage notes

file:///imprint.html
file:///privacy.html
https://oer.gitlab.io/hints.html
https://en.wikipedia.org/wiki/Address_bar
https://revealjs.com/pdf-export/
https://oer.gitlab.io/hints.html
https://oer.gitlab.io/hints.html

1. Introduction

3
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

 (Wk 20)
 (Wk 21)

 (Wk 21)
 (Wk 23)

 (Wk 24)
 (Wk 25)

 (Wk 25)
 (Wk 25)

 (Wk 26)
 (Wk 26)

 (Wk 27)
 (Wk 28)

1.1. OS Plan
OS Overview
OS Introduction
Interrupts and I/O
Threads
Thread Scheduling
Mutual Exclusion (MX)

MX in Java
MX Challenges
Virtual Memory I
Virtual Memory II
Processes
Security

4
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Introduction.html
file:///builds/oer/OS/public/Operating-Systems-Introduction.html
file:///builds/oer/OS/public/Operating-Systems-Interrupts.html
file:///builds/oer/OS/public/Operating-Systems-Threads.html
file:///builds/oer/OS/public/Operating-Systems-Scheduling.html
file:///builds/oer/OS/public/Operating-Systems-MX.html
file:///builds/oer/OS/public/Operating-Systems-MX-Java.html
file:///builds/oer/OS/public/Operating-Systems-MX-Challenges.html
file:///builds/oer/OS/public/Operating-Systems-Memory-I.html
file:///builds/oer/OS/public/Operating-Systems-Memory-II.html
file:///builds/oer/OS/public/Operating-Systems-Processes.html
file:///builds/oer/OS/public/Operating-Systems-Security.html
file:///imprint.html
file:///privacy.html

1.2. Today’s Core Question
How to achieve MX with monitors in Java?
(Also: Semaphores revisited with Java as alternative)

5
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.3. Learning Objectives
Apply and explain MX and cooperation based on
monitor concept in Java

Give example
Discuss incorrect attempts

6
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.4. Retrieval Practice

7
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.4.1. Thread Terminology

1. Select correct statements about thread terminology
 Running programs are managed as threads by the OS.

 Processes and threads are OS management units.

 Each thread may contain one or more threads.

 Concurrency can only arise on multi-core systems.

 Scheduling may lead to interleaved executions of multiple threads.

2. Select correct statements about preemption
 Concurrency can cause preemption.

 Preempted threads are garbage-collected by the OS.

 In response to an interrupt, a thread may be preempted.

 Preemption hinders effective caching.

 Management information on stacks can be used to resume preempted threads later on.

Threads, concurrency, and preemption

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

8
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.4.2. Thread States

1. Select correct statements about states of threads.
 When a thread invokes a system call, it gets blocked.

 Blocked threads are not considered by the scheduler.

 In reaction to external events, the OS may unblock threads.

 At most one thread can be running at any point in time.

Which state for what?

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

9
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.4.3. Java Threads

1. Select the correct statement about Java threads.
 Every class defining the code for a thread is a subclass of Thread.

 The code for a thread is defined in the method run().

 A thread executes its code immediately a�er its creation.

 A thread executes its code when run() is invoked.

What does a thread do?

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

10
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.4.4. Races

1. Select correct statements about race conditions.
 Race conditions can arise between any pair of threads.

 If two threads access shared resources and at least one of them modifies state, race conditions can arise.

 “Mutex” is just another word for “lock”.

 “Semaphores” can be used to prevent race conditions.

 When multiple threads share resources, some programming discipline is required to prevent race conditions.

What’s racing?

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

11
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.4.5. Mutual Exclusion

1. Select correct statements related to Mutual Exclusion.
 Mutual exclusion should be enforced for critical sections.

 Critical sections must be identified by programmers.

 Start and end of critical sections might be indicated with special operations on locks or semaphores.

 A lock in Java is just a special object.

 Proper locking and unlocking of mutexes is the programmer’s responsibility.

MX Vocabulary

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

12
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Table of Contents
1. Introduction
2. Monitors
3. MX in Java
4. Cooperation with Monitors in Java
5. BoundedBuffer in Java
6. Conclusions

13
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2. Monitors

15
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.1. Monitor Idea
Monitor ≈ instance of class with methods and
attributes
Equip every object (= class instance) with a lock

Automatically
Call lock() when method is entered

As usual: Thread is blocked if lock is already locked
Thus, automatic MX
We say that executing thread entered the monitor or executes inside the monitor when it has
passed lock() and executes a method

Call unlock() when method is le�
Thread leaves the monitor

16
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

The basic idea of monitors is as follows: Think of a monitor as an instance of a special type of class, where each
instance is automatically equipped with its own lock. The run-time system ensures that before a method of such a class
is executed on a class instance (which is this in Java), the lock for that class instance needs to be acquired.

We say that a thread that has successfully executed lock() “entered the monitor” or “executes inside the monitor”.

Thus, monitors automatically provide MX for methods of the monitor class: If multiple threads share the same object
(with a potential for race conditions), only one of them can execute inside the monitor at any point in time, while others
are blocked.

Importantly, each object has its own lock. Thus, two threads that operate on different class instances can both acquire
their different locks and execute monitor methods in parallel (without the danger of races as they do not not share
resources).

The next slide explains the origin of monitors in terms of an abstract data type (instead of the more modern “class”
formulation presented here). On that slide, you also see that monitors not only guarantee MX; in addition, they provide
methods for cooperation of threads.

Subsequent slides then discuss how the monitor concept is implemented in Java with the keyword synchronized
(which activates locking of the this object as explained here in general terms) and methods for cooperation.

Speaker notes

file:///imprint.html
file:///privacy.html

2.2. Monitor Origin
Monitors proposed by ; 1974
Abstract data type

Hoare

Methods encapsulate local variables
Just like methods in Java classes

Thread enters monitor via method
Built-in MX: At most one thread in monitor

In addition: Methods for cooperation
cwait(x): Blocks calling thread until csignal(x)

Monitor free then

csignal(x): Starts at most one thread waiting for x
If existing; otherwise, nothing happens
Difference to semaphore: signal may get lost

17
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Tony_Hoare
file:///imprint.html
file:///privacy.html

3. MX in Java

19
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.1. Monitors in Java: Overview
In Java, classes and objects come with built-in locks

Which are ignored by default

Keyword synchronized activates locks
Automatic locking of this object during execution of method

Automatic MX for method’s body
Useful if (large part of) body is a CS

E.g., for sample code from (for which you
previously):

[Hai19] found races

public synchronized void sell() {

 if (seatsRemaining > 0) {

 dispenseTicket();

 seatsRemaining = seatsRemaining - 1;

 } else displaySorrySoldOut();

}

20
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-MX.html#slide-sell-race
file:///imprint.html
file:///privacy.html

3.1.1. Java, synchronized, this
Java basics, hopefully clear

Method sell() from previous slides invoked on some object,
say theater

Each theater has its own attribute seatsRemaining
seatsRemaining is really this.seatsRemaining, which is the same as
theater.seatsRemaining

Inside the method, the name theater is unknown, theater is the this object, which is
used implicitly

Without synchronized, races arise when two
threads invoke sell() on the same object theater

With synchronized, only one of the threads obtains the lock
on theater, so races are prevented

21
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.1.2. Possible Sources of Confusion
With synchronized, locks for objects are activated

For synchronized methods, thread needs to acquire lock for
this object

Methods cannot be locked
Individual attributes of the this object (e.g.,
seatsRemaining) are not locked

(Which is not a problem as object-orientation recommends to
encapsulate attributes, i.e., they cannot be accessed directly but
only through synchronized methods)

22
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.1.3. Self-Study Task
1. Inspect and understand, compile, and run ,

which embeds the code to sell tickets, for which you
.

2. Change sell() to use the monitor concept, recompile, and run
again. Observe the expected outcome.

(Nothing to submit here; maybe ask questions online.)

this sample program 
found races

previously

23
Imprint | Privacy Policy

https://gitlab.com/oer/OS/blob/master/java/TheaterEx.java
file:///builds/oer/OS/public/Operating-Systems-MX.html#slide-sell-race
file:///imprint.html
file:///privacy.html

3.2. Java Monitors in Detail
MX based on

See if you are interested in details
◂ monitor concept

Java specification 🚀

Every Java object (and class) comes with
Monitor with lock (not activated by default)

Keyword synchronized activates lock
For method

public synchronized methodAsCS(...) {…}

Thread acquires lock for object upon call (Class object for static methods)

Or for block
synchronized (syncObj) {…}

Thread acquires lock for syncObj

First thread acquires lock for duration of method/block
Further threads get blocked

Wait set (set of threads; wait() and notify(), explained
; ignore for now)

◂ this

later ▸

24
Imprint | Privacy Policy

https://docs.oracle.com/javase/specs/jls/se18/html/jls-17.html
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

1. Java provides all methods for mutual exclusion discussed in the previous presentation, including the monitor
concept, whose details can be found at the URL given here.

2. In essence, MX with Java is quite simple, as every Java object is equipped with a lock. By default, however, these
locks are not used. Instead, you need to use the keyword synchronized if you want threads to acquire the locks
for MX.

The simplest way to enforce MX is to declare methods operating on shared resources as synchronized. If a thread T1
wants to execute such a synchronized method on some object, then thread T1 will automatically try to acquire the lock
for that object. If that lock has been taken, say by thread T0, then T1 will be blocked until T0 leaves the method and
releases the lock.

Besides, you can also use other objects for synchronization if you want to turn blocks of code into critical sections. We
will not use this, however.

Finally, the Java monitor concept includes a mechanism for cooperation of threads based on wait sets, which will be
explained later.

Speaker notes

file:///imprint.html
file:///privacy.html

3.3. synchronized Example◂ Recall:
public synchronized void sell() {

 if (seatsRemaining > 0) {

 dispenseTicket();

 seatsRemaining = seatsRemaining - 1;

 } else displaySorrySoldOut();

}

, synchronized avoids
races

Method executed under MX
Threads need to acquire lock on this object before executing
method

◂ As you observed above

Really, it is that simple!

25
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4. Cooperation with
Monitors in Java

27
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.1. General Idea
Threads may work with different roles on shared data
structures

E.g.,

Some may find that they cannot continue before
others did their work

The former call wait() and hope for notify() by the latter
Cooperation (orthogonal to and not necessary for MX!)

General
Wait set mentioned and explained subsequently

producer/consumer problems seen earlier

◂ monitor concept
◂ above

28
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-MX.html#slide-producer-consumer
file:///imprint.html
file:///privacy.html

4.2. wait() and notify() in Java
Waiting via blocking

wait(): thread unlocks and leaves monitor, enters wait set
Thread enters blocked (no busy waiting)
Called by thread that cannot continue (without work/help of another thread)

state

Notifications
notify()

Remove one thread from wait set (if such a thread exists)
Change state from blocked to runnable

Called by thread whose work may help another thread to continue

notifyAll()

Remove all threads from wait set
Only one can lock and enter the monitor, of course
Only a�er the notifying thread has le� the monitor, of course
Overhead (may be avoidable with appropriate synchronization objects or with

)
semaphores as

seen previously

29
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Scheduling.html#slide-thread-states
file:///builds/oer/OS/public/Operating-Systems-MX.html#slide-semaphore-example
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

1. Cooperation between threads sharing resources can be managed with the methods wait() and notify() (or
notifyAll()). A thread can only invoke these methods on an object if it has acquired the lock for that object, i.e., if it
currently executes inside the object’s monitor. So, usually, you see invocations of wait and notify in synchronized
methods.

2. If a thread finds that it cannot make use of the shared resource in the resource’s current state, it can invoke wait()
to release the lock on that resource and leave its monitor. At that point in time, the thread’s state changes to
blocked, and the thread is recorded in a special data structure associated with the object, called wait set. In the
wait set, Java keeps track of all threads that have invoked wait() on the object. So, once a thread has executed
wait(), the object’s lock is released, and other threads can acquire the object’s lock and modify the object’s state.

3. If a thread has modified the object’s state in such a way that there is reason to believe that waiting threads might
now be able to continue, the thread invokes notify() on the object, which removes one thread from the wait set and
makes it runnable. When that runnable thread is scheduled for execution later on, it can again try to enter to
monitor by locking the object; once the lock has been acquired, the thread resumes execution after the wait()
method. The method notifyAll() is an alternative to notify() that removes all threads from the wait set, not just one.
You may want to think about advantages and disadvantage of notifying all waiting threads yourself.

Speaker notes

file:///imprint.html
file:///privacy.html

5. BoundedBuffer in Java

31
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

5.1. Bounded Buffers
A buffer is a data structure to store items, requests,
responses, etc.

Lots of buffer variants exist
A bounded buffer has a limited capacity

E.g., a or any other data structure of limited capacity

As with any other data structure, MX is necessary when
buffers are shared

Subsequently, two alternative buffer implementations with MX
Java’s monitor concept (with array as underlying, shared data structure)
Java Semaphore (with list as underlying, shared data structure)

Java array 

32
Imprint | Privacy Policy

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
file:///imprint.html
file:///privacy.html

5.2. Sample synchronized Java Method

(Part of)

// Based on Fig. 4.17 of [Hai17]

public synchronized void insert(Object o)

 throws InterruptedException

// Called by producer thread

{

 while(numOccupied == buffer.length)

 // block thread as buffer is full;

 // cooperation from consumer required to unblock

 wait();

 buffer[(firstOccupied + numOccupied) % buffer.length] = o;

 numOccupied++;

 // in case any retrieves are waiting for data, wake/unblock them

 notifyAll();

}

SynchronizedBoundedBuffer.java

33
Imprint | Privacy Policy

https://gitlab.com/oer/OS/-/blob/master/java/SynchronizedBoundedBuffer.java
file:///imprint.html
file:///privacy.html

5.2.1. Comments on synchronized
Previous method in larger program:

SynchronizedBoundedBuffer as shared resource
Different threads (instances and
instances) call synchronized methods on that bounded buffer

Before methods are executed, lock of buffer needs to be acquired
This enforces MX for methods insert() and retrieve()

In methods, threads call wait() on buffer if unable to continue
this object used implicitly as target of wait()
Thread enters wait set of buffer
Until notifyAll() on same buffer

Note that thread classes contain neither synchronized nor wait/notify

BBTest.java

Producer Consumer

34
Imprint | Privacy Policy

https://gitlab.com/oer/OS/blob/master/java/BBTest.java
https://gitlab.com/oer/OS/blob/master/java/Producer.java
https://gitlab.com/oer/OS/blob/master/java/Consumer.java
file:///imprint.html
file:///privacy.html

5.3. Sample Semaphore Use in Java
import java.util.concurrent.Semaphore;

/*

 This code is based on Figure 4.18 of the following book:

 Max Hailperin, Operating Systems and Middleware – Supporting

 Controlled Interaction, revised edition 1.3, 2017.

 https://gustavus.edu/mcs/max/os-book/

 In Figure 4.18, synchronizedList() is used, whereas here a

 plain LinkedList is used, which is protected by the additional

 semaphore mutex.

 Also, the class here is renamed and implements a new interface.

*/

public class SemaphoreBoundedBuffer implements BoundedBuffer {

 private java.util.List<Object> buffer =

 new java.util.LinkedList<Object>();

 private static final int SIZE = 20; // arbitrary

 private Semaphore mutex = new Semaphore(1);

35
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

5.3.1. Comments on Java Semaphore
Java provides

Implements
Constructor with integer argument to track resources
Methods acquire() and release()

SemaphoreBoundedBuffer implements same
interface as SynchronizedBoundedBuffer

Use whichever you want with
Bounded buffer uses three semaphores

One (initialized to 1) acting as mutex
Note acquire() and release() around buffer accesses for MX

Other two counting occupied and free places

java.util.concurrent.Semaphore

semaphore concept

BBTest.java

36
Imprint | Privacy Policy

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/concurrent/Semaphore.html
file:///builds/oer/OS/public/Operating-Systems-MX.html#slide-semaphore-origin
https://gitlab.com/oer/OS/blob/master/java/BBTest.java
file:///imprint.html
file:///privacy.html

6. Conclusions

38
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

6.1. Summary
Java objects can act as monitors

Keyword synchronized
MX for CS (method/block of code)

No flags, no explicit locks!

Cooperation via wait() and notify()

39
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Bibliography
 Hailperin, Operating Systems and Middleware – Supporting Controlled Interaction,

revised edition 1.3.1, 2019.
[Hai19]

https://gustavus.edu/mcs/max/os-book/

40
Imprint | Privacy Policy

https://gustavus.edu/mcs/max/os-book/
file:///imprint.html
file:///privacy.html

License Information
This document is part of an course
on Operating Systems.

 under .

Except where otherwise noted, the work “OS06: MX in Java”, © 2017-
2023 , is published under the

.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other
(trade-) marks (e.g., “Creative Commons” itself) remain with their
respective holders.

Open Educational Resource (OER)
Source code and source files are available on

GitLab free licenses

Jens Lechtenbörger Creative Commons
license CC BY-SA 4.0

No warranties are given. The license may not give you all of the permissions
necessary for your intended use.

Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
file:///imprint.html
file:///privacy.html

41
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

