
OS01: OS Introduction
Partially based on Chapter 1 of
(for this presentation)

Computer Structures and Operating Systems 2023
Dr. Jens Lechtenbörger ()

[Hai19]
Usage hints

License Information

Data Science: Machine Learning and Data Engineering (Prof. Gieseke)
Dept. of Information Systems
WWU Münster, Germany

1
Imprint | Privacy Policy

https://www.uni-muenster.de/en/
https://www.ercis.org/
https://oer.gitlab.io/hints.html
https://www.wi.uni-muenster.de/department/dasc
https://www.wi.uni-muenster.de/
https://www.uni-muenster.de/en/
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

To toggle these notes, press v
If a slide contains audio, notes might show transcript

Press ? for key bindings (in particular, a, o, n, p, Ctrl-Shift-f)
Presentations support two different PDF formats, see

Both hyperlinked on index page
Concise PDF format (replace .html and whatever follows in with .pdf)
Print browser view to PDF (add ?print-pdf after .html, then print to PDF;)

If you find the amount of outgoing links to be distracting, see
Add ?hidelinks (maybe with a number) after .html

See for other non-obvious features

Speaker notes

usage notes

address bar
suggested settings

usage notes

usage notes

file:///imprint.html
file:///privacy.html
https://oer.gitlab.io/hints.html
https://en.wikipedia.org/wiki/Address_bar
https://revealjs.com/pdf-export/
https://oer.gitlab.io/hints.html
https://oer.gitlab.io/hints.html

Agenda
1. Introduction
2. Operating Systems
3. Multitasking
4. Conclusions

2
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1. Introduction

4
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

1.1. Learning Objectives
Explain notion of Operating System and its goals

Explain notion of kernel with system call API
(More details in)

Explain notions and relationships of process, thread,
multitasking

next presentation

5
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Interrupts.html
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

 specify what you should be able to do after having worked through a presentation. Thus, they
offer guidance for your learning.

Each learning objective consists of two major components, namely an action verb and a topic. Action verbs specify what
actions you should be able to perform concerning the topic, and they indicate the target level of skill (in Bloom’s
Taxonomy or its revised version as sketched under the hyperlink above).

You may want to think of learning objectives as sample exam tasks.

Speaker notes

Learning objectives

file:///imprint.html
file:///privacy.html
https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/

1.2. Recall: Big Picture of CSOS
Computer Structures and Operating Systems (CSOS)

CS: How to build a computer from logic gates?
Von Neumann architecture
CPU (ALU), RAM, I/O

“N
AN

D”
un

de
r ;

fro
m

CC
0

1.
0

Gi
tL

ab

“C
PU

” u
nd

er

;
cr

op
pe

d
an

d
co

nv
er

te
d

fro
m

CC
0

1.
0

Pi
xa

ba
y

OS: What abstractions do Operating Systems
provide for applications?

Processes and threads with scheduling and
concurrency, virtual memory
What is currently executing why and where,
using what resources how?

“P
on

g
in

 T
EC

S
VM

” u
nd

er

; s
cr

ee
ns

ho
t o

f
GP

Lv
2

VM
 o

f T
EC

S
so

ftw
ar

e
su

ite

6
Imprint | Privacy Policy

https://creativecommons.org/publicdomain/zero/1.0/
https://gitlab.com/oer/figures/blob/master/gates/tikz/nand.tex
https://creativecommons.org/publicdomain/zero/1.0/
https://pixabay.com/en/cpu-processor-macro-pen-pin-564771/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.nand2tetris.org/software
file:///imprint.html
file:///privacy.html

1.2.1. OS Responsibilities

What does your OS even do?

Fi
gu

re
 ©

 2
01

6
Ju

lia
 E

va
ns

, a
ll

rig
ht

s r
es

er
ve

d;
 fr

om

.
Di

sp
la

ye
d

he
re

 w
ith

 p
er

so
na

l p
er

m
is

si
on

.
ju

lia
's

 d
ra

w
in

gs

7
Imprint | Privacy Policy

https://drawings.jvns.ca/os-responsibilities/
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

Several OS presentations contain awesome drawings by Julia Evans such as this one. In general, these drawings are
meant to speak for themselves as additional perspective on class topics (or even beyond class topics), and they come
without any explanation.

Except for this additional context, this drawing would not be accompanied by a note. It shows typical services provided
by OSs and to be used by programs. The interface between programs and OS will be revisited as API of so-called
“system calls”.

Speaker notes

file:///imprint.html
file:///privacy.html

2. Operating Systems

9
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.1. Sample Modern Operating Systems
Different systems for different scenarios

Mainframes
, ,

PCs
, , , ,

Mobile devices
Variants of other OSs
Separate developments, e.g., BlackBerry (based on QNX,
abandoned), , (Nokia, most popular
smartphone OS until 2010, now replaced)

Gaming devices
Real-time OS

Embedded systems
 variants, , ,

BS2000/OSD 🚀 GCOS 🚀 z/OS 🚀

MS-DOS 🚀 GNU/Linux 🛈 MacOS 🚀 Redox 🚀 Windows 🚀

BlackBerry 10 🚀
Google Fuchsia 🚀 Symbian 🚀

L4 ▸ FreeRTOS 🚀 QNX 🚀 VxWorks 🚀

10
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/BS2000
https://en.wikipedia.org/wiki/General_Comprehensive_Operating_System
https://en.wikipedia.org/wiki/Z/OS
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/GNU%2FLinux_naming_controversy
https://en.wikipedia.org/wiki/MacOS
https://www.redox-os.org/
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/BlackBerry_10
https://en.wikipedia.org/wiki/Google_Fuchsia
https://en.wikipedia.org/wiki/Symbian
https://en.wikipedia.org/wiki/FreeRTOS
https://en.wikipedia.org/wiki/QNX
https://en.wikipedia.org/wiki/VxWorks
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

There is a vast variety of OSs for different devices and usage scenarios, of which this slide shows a selection.

The goal of the OS sessions is not to turn you into an expert for any specific OS, but to teach you major concepts and
techniques that are shared by most modern OSs. As my hope is that you can apply your
knowledge on the one hand when designing, analyzing, or implementing information systems and on the other when
taking control of your own devices.

Based on my personal beliefs, I will not teach you anything about non-free OSs (except maybe first steps to get away
from them). In particular, examples shown in presentations and in class will be based on the OS .
As GNU/Linux is free, you can experiment with it at any level of detail yourself.

Speaker notes

explained previously

free GNU/Linux

file:///imprint.html
file:///privacy.html
file:///builds/oer/OS/public/Operating-Systems-Motivation.html
file:///builds/oer/OS/public/Operating-Systems-Motivation.html#slide-free-software
file:///builds/oer/OS/public/Operating-Systems-Motivation.html#slide-gnu-linux

2.2. Definition of Operating System
Definition from : Software

that uses hardware resources of a computer system
to provide support for the execution of other software.

[Hai19]

“F
ig

ur
e

1.
1

of

” b
y

M
ax

 H
ai

lp
er

in
un

de
r

; c
on

ve
rt

ed
 fr

om
[H

ai
17

]
CC

 B
Y-

SA
 3

.0
Gi

tH
ub

11
Imprint | Privacy Policy

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0101.pdf
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

Part (a) of the figure shows the situation of a computer without an OS. Here, applications (and programmers) need to
interact with hardware directly at a low level of abstraction. This is what you did on Hack. E.g., you needed to know a
specific memory location to access the keyboard.

Part (b) illustrates typical services provided by an OS to shield applications (and programmers) from hardware-specific
details. E.g., multiple applications may run concurrently, interact as parts of distributed systems with networking
functionality, or share persistent storage at the abstraction of file systems (without needing to worry about, say, specifics
of particular keyboards, disks, or network cards and their interfaces).

What you see here is a typical example of layering to hide lower-layer details with the abstractions of an interface in
software engineering: The OS provides an API (see) of functions that application programmers can invoke to
access OS services, in particular to access underlying hardware. As , that API is provided by a core part
of the OS, which is called and whose functions are called .

Speaker notes

next slide ▸
explained later ▸

kernel ▸ system calls ▸

file:///imprint.html
file:///privacy.html

2.2.1. Aside: API
API =

Set of functions or interfaces or protocols defining how to use
some system (as programmer)
E.g.,

Packages with classes, interfaces, methods, etc.

Application Programming Interface 🛈

Java 18 API 🚀

12
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Application_programming_interface
https://docs.oracle.com/en/java/javase/18/docs/api/index.html
file:///imprint.html
file:///privacy.html

2.2.2. OS Services
OS services/features/functionality defined by its API

Functionality includes
Support for multiple concurrent computations

Run programs, divide hardware, manage state

Control interactions between concurrent computations
E.g., locking, private memory

Typically, also networking support

“F
ig

ur
e

1.
1

of

” b
y

M
ax

H
ai

lp
er

in
 u

nd
er

;

co
nv

er
te

d
fro

m

[H
ai

17
]

CC
 B

Y-
SA

 3
.0

Gi
tH

ub

13
Imprint | Privacy Policy

https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/Max-Hailperin/Operating-Systems-and-Middleware--Supporting-Controlled-Interaction/blob/master/hail_f0101.pdf
file:///imprint.html
file:///privacy.html

2.3. OS, Kernel, User Interface
Boundary between OS and applications is fuzzy
Kernel is fundamental, core part of OS

Kernel defines API and services via system call interface
(More details on next and)later slide ▸

User interface (UI; not part of kernel)
UI = process(es) using kernel functionality to handle user input,
start programs, produce output, …

User input: Voice, touch, keyboard, mouse, etc.
Typical UIs: Command line, explorer for Windows, various desktop
environments for GNU/Linux,

Note: OSs for embedded systems may not have UI at all
virtual assistants 🛈

14
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Virtual_assistant
file:///imprint.html
file:///privacy.html

2.3.1. How to Talk to OSs

How to talk to your operating system

Fi
gu

re
 ©

 2
01

6
Ju

lia
 E

va
ns

, a
ll

rig
ht

s r
es

er
ve

d;
 fr

om

.
Di

sp
la

ye
d

he
re

 w
ith

 p
er

so
na

l p
er

m
is

si
on

.
ju

lia
's

 d
ra

w
in

gs

15
Imprint | Privacy Policy

https://drawings.jvns.ca/syscalls/
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

System calls are an important concept as they define the services provided by an OS kernel in terms of an API. Here,
you see names of sample system calls, which are not important to remember but which might help to shape your
understanding, before system calls are revisited subsequently.

Speaker notes

file:///imprint.html
file:///privacy.html

2.3.2. User Space and Kernel Space

User space vs. kernel space

Fi
gu

re
 ©

 2
01

6
Ju

lia
 E

va
ns

, a
ll

rig
ht

s r
es

er
ve

d;
 fr

om

.
Di

sp
la

ye
d

he
re

 w
ith

 p
er

so
na

l p
er

m
is

si
on

.
ju

lia
's

 d
ra

w
in

gs

16
Imprint | Privacy Policy

https://drawings.jvns.ca/userspace/
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

This drawing introduces a distinction between user space and kernel space, which is revisited on a and in
the . Briefly, in kernel space the OS has full control over the underlying hardware, while applications
running in user space need to invoke system calls to ask the OS to perform more privileged operations (e.g., to receive
input from hardware devices or to write to them as illustrated for a sample file access here).

System calls lead to so-called context switches between different execution contexts, here between user space and
kernel space (and back), which will be revisited in later presentations when discussing and

.

Speaker notes

later slide ▸
next presentation

interrupt handling thread
switching

file:///imprint.html
file:///privacy.html
file:///builds/oer/OS/public/Operating-Systems-Interrupts.html#slide-kernel-mode
file:///builds/oer/OS/public/Operating-Systems-Interrupts.html#slide-irq-handling
file:///builds/oer/OS/public/Operating-Systems-Threads.html#slide-thread-switching

2.3.3. OS Size
From

Size of source code of the heart Windows or GNU/Linux is about 5
million lines of code

Think of book with 50 lines per page, 1000 pages
Need 100 books or an entire bookcase

Windows with essential shared libraries is about 70 million lines
of code

10 to 20 bookcases

How to understand or maintain that?
→ Abstraction, layering, modularization

[TB15]

17
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.4. OS Architecture and Kernel Variants

 provides a real-life
monolithic example

Monolith-, Micro- and a "hybrid" kernel Fi
gu

re
 u

nd
er

; f

ro
m

CC

0
1.

0
W

ik
im

ed
ia

Co
m

m
on

s

This map of the Linux kernel 🚀

18
Imprint | Privacy Policy

https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:OS-structure2.svg
https://makelinux.github.io/kernel/map/
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

This figure shows different approaches towards layering and modularization in the context of OS kernels. First of all,
note the common layers, namely applications at the top and hardware at the bottom.

In between are different layers related to what we think of as OS functionality. Note that this OS functionality is marked
with a red (left) and yellow (middle and right) background labeled “kernel mode” and “user mode”, respectively. These
modes refer to different CPU privilege levels, which will be discussed in the ; for now it is sufficient to
know that code running in kernel mode has full control over the underlying hardware, while code running in user mode is
restricted and needs to invoke lower layers (that run in kernel mode) for certain functionality.

At one extreme, shown in the middle here, are so-called micro kernels, which just provide the minimal functionality and
services as foundation for full-fledged OSs. Typical functionality that we expect from OSs, such as file services or
hardware independent network access, is then not implemented in the kernel but in user mode processes or servers.
The as well as provide examples for micro kernels.

The other extreme is made up of so-called monolithic kernels, which provide (almost) everything that we expect from
OSs. For modularization, such kernels may be structured in a sequence of layers, where the top layer provides the
system call API to be explained on subsequent slides, while the bottom layer implements device driver abstractions to
hide hardware peculiarities. Intermediate layers offer levels of abstraction on the way from hardware to application
facing functionality. GNU/Linux and Windows come with monolithic kernels.

Finally, (e.g., Windows NT) can be built as trade-off between both extreme approaches.

Speaker notes

next presentation

L4 family mentioned later on ▸ ◂ Fuchsia

hybrid kernels 🚀

file:///imprint.html
file:///privacy.html
file:///builds/oer/OS/public/Operating-Systems-Interrupts.html#slide-kernel-mode
https://en.wikipedia.org/wiki/Hybrid_kernel

2.4.1. OS Kernel
OS runs as code on CPU

Just as any other program

Kernel contains central part of OS
Provides API for OS services via system calls (next slide) ▸
Code and data of kernel typically main memory resident
Kernel functionality runs in kernel mode of CPU, reacts to system
calls and interrupts

Details in next presentation

Variants ()
Monolithic (“large,” all OS related services)
Micro kernel (“small,” only necessary services)
“Best” design subject to research

Provable security only with micro kernels ()

◂ previous slide

seL4 ▸

19
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Interrupts.html
file:///imprint.html
file:///privacy.html

2.4.2. System Calls
System call = function = part of kernel API

Implementation of OS service
E.g., process execution, main memory allocation, hardware resource access
(e.g., keyboard, network, file and disk, graphics card)

Different OSs offer different system calls (i.e., offer
incompatible APIs)

With different implementations
With different calling conventions

20
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

2.4.3. Sample Microkernel: L4
L4, developed by Jochen Liedtke, late 1990s

Liedtke’s 4th system (after Algol interpreter, Eumel, and L3)
Now with
Notable properties

12 KB source code
(Vs 918 KB for in 1994)

7 system calls
Abstractions: Address space, Threads, Inter-Process-Communication (IPC)

Breakthrough result in 2009, : Formal
verification of the OS kernel

Mathematical proof of correctness
Updates/patches are a thing of the past

More recent description in

family of L4 based kernels 🚀

(heavily compressed) source code of Linux 1.0

[KEH+09]
seL4 🚀

[KAE+14]

21
Imprint | Privacy Policy

https://en.wikipedia.org/wiki/L4_microkernel_family
https://mirrors.edge.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.xz
https://sel4.systems/
file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

This slide contains some details about the micro kernel L4. First of all, note its size of 12 KB. In contrast, the
 had a size of 918 KB in 1994 (which has grown to 113 MB for

). Thus, 12 KB is really small for software, which in this case contains necessary kernel functionality regarding
the creation of threads for multitasking as well as their memory use via address spaces and their communication.

The question of what constitutes a minimal OS kernel is not just an academic one. In fact, for smaller pieces of software
we can hope to perform mathematical correctness proofs for their functionality. Indeed, a break-through result was
achieved in 2009, when the correctness of the L4 variant seL4 was formally verified. Please take a moment to think
about this fact. Such software will never need to be patched to fix bugs. Bugs do not exist.

What I would like you to remember is that formally verified software exists, and it exists up to the complexity of micro
kernels. Thus, if you should ever find yourself in a position where you are responsible for the correctness of software,
say for autonomous devices or critical infrastructures, you should remember that the state-of-the-art makes it hard to
find an excuse for buggy software and resulting system failures.

As stated on the next slide, L4 variants are actually deployed in billions of devices.

Speaker notes

(heavily
compressed) source code of Linux 1.0 Linux 5.12 in
2021

file:///imprint.html
file:///privacy.html
https://mirrors.edge.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.12.tar.xz

L4 variants today
OKL4, deployed in

OS for baseband processor (modem, management of radio functions)
Starting with Qualcomm

Embedded, mobile, IoT, automotive, defense, medical, industrial, and
enterprise applications

Another variant in Apple’s Secure Enclave coprocessor (see
)

A7 processor (iPhone 5S, iPad mini 3) and later

Airbus 350, Merkelphone
 based on seL4

over 2 billion devices 🚀

PDF
on this page 🚀

Project Sparrow 🚀

22
Imprint | Privacy Policy

https://gdmissionsystems.com/products/cross-domain-solutions/hypervisor
https://support.apple.com/guide/security/welcome/web
https://github.com/AmbiML/sparrow-manifest
file:///imprint.html
file:///privacy.html

3. Multitasking

24
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.1. Multitasking
Fundamental OS service: Multitasking

Manage multiple computations going on at the same time
E.g., surf on Web while Java project is built and music plays

OS supports multitasking via scheduling
Decide what computation to execute when on what CPU core

: Frequently per second, time-sliced, beyond human perceptionRecall

Multitasking introduces concurrency
(Details and challenges in upcoming sessions)

: Even with single CPU core, illusion of “simultaneous” or
“parallel” computations

(Later presentation: Advantages include
)

Recall

improved responsiveness and
improved resource usage

25
Imprint | Privacy Policy

file:///builds/oer/OS/public/Operating-Systems-Overview.html#slide-os-plan
file:///builds/oer/OS/public/Operating-Systems-Overview.html#slide-os-plan
file:///builds/oer/OS/public/Operating-Systems-Threads.html#slide-thread-reasons
file:///imprint.html
file:///privacy.html

3.2. Computations
Various technical terms for “computations”: Jobs,
tasks, processes, threads, …

We use only thread and process
Process

Container for related threads and their resources
Created upon start of program and by programs (child processes)
Unit of management and protection (threads from different processes are
isolated from another)

Thread
Sequence of instructions (to be executed on CPU core)
Single process may contain just one or several threads, e.g.:

Online game: different threads with different code for game AI, GUI events, network handling
Web server handling requests from different clients in different threads sharing same code

Unit of scheduling and concurrency

26
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

(Audio for this slide is split into several audio files, one for each step of the animation. In contrast, these notes contain a
transcript of all animation steps.)

Among the various technical terms that can be used for the computations going on in our machines, we are only
interested in process and thread as explained here and on subsequent slides. The specifics of processes and threads
vary from OS to OS, and, in fact, some OSs may not know either of both notions. We only consider OSs that support
multiple processes, each of which can contain multiple threads.

Roughly, when you execute a program, e.g., a Java program, your OS creates a process to manage computations and
resources associated with that program. (As revisited , the situation is more complex, though, as a single program
can ask the OS (via system calls) to create lots of processes.)

Importantly, the OS isolates different processes from each other so that they are protected from malicious and
accidental actions of other processes. (In theory, the crash of one process should not affect any other process; in
practice, security issues usually violate this goal of isolation.)

In any case, when you start a program, the OS creates a process for that program, and it also creates a thread to
execute the program’s instructions. The programmer is free (to ask the OS via system calls) to create more threads that
execute in the context of the same process and, thus, can share resources and data structures of their process. A later
presentation will address how to , where you invoke functions of the Java API to create threads,
which in turn are implemented with systems calls in the Java runtime.

The OS keeps track of all existing threads and schedules them for execution on CPU cores. Recall that
, which leads to the illusion of a parallel execution of all threads (even on a single-core

system) and which will be revisited in the .

Speaker notes

later ▸

create threads in Java

scheduling
usually involves time slicing

presentation on scheduling

file:///imprint.html
file:///privacy.html
file:///builds/oer/OS/public/Operating-Systems-Threads.html#slide-java-threads
file:///builds/oer/OS/public/Operating-Systems-Overview.html#slide-os-plan
file:///builds/oer/OS/public/Operating-Systems-Scheduling.html

3.2.1. Threads!

Threads!

Fi
gu

re
 ©

 2
01

6
Ju

lia
 E

va
ns

, a
ll

rig
ht

s r
es

er
ve

d;
 fr

om

.
Di

sp
la

ye
d

he
re

 w
ith

 p
er

so
na

l p
er

m
is

si
on

.
ju

lia
's

 d
ra

w
in

gs

27
Imprint | Privacy Policy

https://drawings.jvns.ca/threads/
file:///imprint.html
file:///privacy.html

3.2.2. Process Aspects (1/3)

What's in a process?

Fi
gu

re
 ©

 2
01

6
Ju

lia
 E

va
ns

, a
ll

rig
ht

s r
es

er
ve

d;
 fr

om

.
Di

sp
la

ye
d

he
re

 w
ith

 p
er

so
na

l p
er

m
is

si
on

.
ju

lia
's

 d
ra

w
in

gs

28
Imprint | Privacy Policy

https://drawings.jvns.ca/process/
file:///imprint.html
file:///privacy.html

3.2.3. Process Aspects (2/3)
Approximately, process ≈ running program

E.g., text editor, game, audio player
OS manages lots of them simultaneously

Really, process = “whatever your OS manages as such”
OS specific tools to inspect processes (research on your own!)

29
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.2.4. Process Aspects (3/3)
Single program may create multiple processes, e.g.:

Apache Web server with “process per request” ()
Web browsers with “process per tab” or separation of UI and web
content

E.g., Firefox with projects and

Many-to-many relationship between “applications”
and processes

E.g., provides lots of “applications”
Core process includes: Text editor, chat/mail/news/RSS clients, Web browser,
calendar

: “emacs outshines all other editing software in approximately the
same way that the noonday sun does the stars. It is not just bigger and brighter; it simply
makes everything else vanish.”

On-demand child processes: Spell checker, compilers, PDF viewer

MPM prefork 🚀

Electrolysis 🚀 Project Fission 🚀

GNU Emacs 🚀

Neal Stephenson, 1999

30
Imprint | Privacy Policy

https://httpd.apache.org/docs/2.4/mod/prefork.html
https://wiki.mozilla.org/Electrolysis
https://wiki.mozilla.org/Project_Fission
https://www.gnu.org/software/emacs/
https://web.archive.org/web/20180218045352/http://www.cryptonomicon.com/beginning.html
file:///imprint.html
file:///privacy.html

3.3. Processes vs Threads

Classification of Processes and Threads from Anderson et al. (1997)

31
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

This figure shows a classification of platforms or execution environments for processes and threads from .
Note that although all threads are represented using the same curved line for graphical simplicity, each thread shown in
the figure can actually execute its own instructions, independently from all other threads. Furthermore, although multiple
threads are shown in parallel, no assumptions are made whether their instructions are really executed in parallel; clearly,
parallel execution requires hardware support, e.g., in the form of multiple CPU cores, as well as OS support.

As shown in quadrant Q2, a platform may be characterized as supporting just a single process with a single thread,
which effectively means that it has no notion of process or thread at all but just happily executes whatever instructions
are there in one undifferentiated context. Thus, multitasking is not supported. Actually, the CS part of CSOS introduced
one such platform …

Q1 indicates multiple threads executing inside a single process, which may appear strange at first sight, but you actually
also know one such execution environment quite well. You should not think about platforms consisting of hardware with
OS here but about execution environments that can be started inside OSs …

Q3 captures platforms with multiple single-threaded processes. Again, if everything is single-threaded, then the platform
actually does not support threads, but just schedules processes for execution. This is mostly the case for older OSs.

Finally, Q4 contains multiple processes which in turn can host multiple threads. This is what we take for granted in
upcoming OS sessions.

Speaker notes

[ABL+97]

file:///imprint.html
file:///privacy.html

3.4. Exercises and Self-Study Tasks

32
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

3.4.1. Processes and threads
This task is available for self-study in .

Sort sample OSs into the

Hack, MS-DOS, Java Virtual Machine, Windows 10, GNU/Linux,
GNU/Linux prior kernel 1.3.56, GNU/Linux starting with kernel 1.3.56

It is no problem if you do not know those environments and guess for this task
MS-DOS dates back to the 1980s, the GNU/Linux kernel 1.3.56 to 1996

Use educated guessing there ;)

Learnweb

◂ quadrants of Anderson et al.

33
Imprint | Privacy Policy

https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=68583#section-8
file:///imprint.html
file:///privacy.html

3.4.2. Exercise Outlook: Bash Command
Line

Investigate among first OS exercises
Game, which teaches use of the Bash command line
Command line = shell = text-mode user interface for OS

Create processes for programs or scripts

Different shells come with incompatible features
Game supposes Bash in combination with typical GNU/Unix tools (e.g., grep, head, tail)

Task
Access files for game

 or clone with git clone https://github.com/veltman/clmystery.git

Start playing game according to

While investigating the case, you need to search files for clues, learning essential commands and
patterns along the way
We will ask you to submit some command(s)

(Command line examples show up throughout this course; details of
file handling to be revisited in)

The Command Line Murders 🛈

See next slide for some options ▸

Download

its README
See next slide for hints ▸

presentation on processes

34
Imprint | Privacy Policy

https://github.com/veltman/clmystery
https://github.com/veltman/clmystery/archive/master.zip
https://github.com/veltman/clmystery/blob/master/README.md
file:///builds/oer/OS/public/Operating-Systems-Processes.html
file:///imprint.html
file:///privacy.html

3.4.3. Using Bash as Command Line
Where/how to start Bash as command line

Built-in with GNU/Linux; use own (virtual) machine
Alternatively, students reported success with
Alternatives without Linux kernel (no or incomplete /proc for later presentations)

Maybe use Cygwin according to hints in , but note that more students report problems with Cygwin than with Windows Subsystem
for Linux/Ubuntu mentioned above
Shell coming with

Basic hints for
 is misnamed; it contains essential information to get you started

Open in editor

Once on command line, maybe try this first:
mount to show filesystems, e.g., with Cygwin, the location of C: may be shown as /cygdrive/c
ls (short for “list”) to view contents of current directory
ls /cygdrive/c to view contents of given directory (if it exists)
Beware! Avoid spaces in names of files and directories: Space character separates arguments (need to escape spaces with backslash or use quotation
marks around name)
pwd (short for “print working directory”) to print name of current directory
cd replace-this-with-name-of-directory-of-mystery (short for “change directory”) to change directory to chosen location, e.g., location
of mystery’s files
man name-of-command shows manual page for name-of-command
Try man man first, then man ls

Afterwards, follow
(Which supposes that you changed to the directory with the game’s files already)

Windows Subsystem for Linux/Ubuntu on Windows

game’s cheatsheet

Git for Windows
Terminal of macOS

The Command Line Murders
Game’s cheatsheet

game’s README

35
Imprint | Privacy Policy

https://docs.microsoft.com/en-us/windows/wsl/about
https://github.com/veltman/clmystery/blob/master/cheatsheet.md
https://gitforwindows.org/
https://en.wikipedia.org/wiki/Terminal_(macOS)
https://github.com/veltman/clmystery
https://github.com/veltman/clmystery/blob/master/cheatsheet.md
https://github.com/veltman/clmystery/blob/master/README.md
file:///imprint.html
file:///privacy.html

3.4.4. Feedback
This slide serves as reminder that I am happy to obtain and provide
feedback for course topics and organization. If contents of
presentations are confusing, you could describe your current
understanding (which might allow us to identify misunderstandings),
ask questions that allow us to help you, or suggest improvements
(maybe on). Please use the session’s shared document or
MoodleOverflow. Most questions turn out to be of general interest;
please do not hesitate to ask and answer where others can benefit. If
you created additional original content that might help others (e.g., a
new exercise, an experiment, explanations concerning relationships
with different courses, …), please share.

GitLab

36
Imprint | Privacy Policy

https://gitlab.com/oer/OS
file:///imprint.html
file:///privacy.html

4. Conclusions

38
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

4.1. Summary
OS is software

that uses hardware resources of a computer system
to provide support for the execution of other software.

Computations are performed by threads.
Threads are grouped into processes.

OS kernel
provides interface for applications and
manages resources.

39
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Bibliography
 Anderson, Bershad, Lazowska & Levy, Thread Management for Shared-Memory

Multiprocessors, in: The Computer Science and Engineering Handbook, CRC Press, 1997.

 Hailperin, Operating Systems and Middleware – Supporting Controlled Interaction,
revised edition 1.3.1, 2019.

 Klein, Andronick, Elphinstone, Murray, Sewell, Kolanski & Heiser, Comprehensive
Formal Verification of an OS Microkernel, ACM Trans. Comput. Syst. 32(1), 2:1-2:70 (2014).

 Klein, Elphinstone, Heiser, Andronick, Cock, Derrin, Elkaduwe, Engelhardt,
Kolanski, Norrish, Sewell, Tuch & Winwood, seL4: Formal Verification of an OS Kernel, in:
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, 2009.

 Tanenbaum & Bos, Modern Operating Systems, Pearson, 2015.

[ABL+97]

https://homes.cs.washington.edu/~tom/pubs/threads.pdf
[Hai19]

https://gustavus.edu/mcs/max/os-book/
[KAE+14]

https://dl.acm.org/citation.cfm?doid=2560537
[KEH+09]

https://dl.acm.org/citation.cfm?doid=1629575.1629596
[TB15]

40
Imprint | Privacy Policy

https://homes.cs.washington.edu/~tom/pubs/threads.pdf
https://gustavus.edu/mcs/max/os-book/
https://dl.acm.org/citation.cfm?doid=2560537
https://dl.acm.org/citation.cfm?doid=1629575.1629596
file:///imprint.html
file:///privacy.html

License Information
This document is part of an course
on Operating Systems.

 under .

Except where otherwise noted, the work “OS01: OS Introduction”, ©
2017-2023 , is published under the

.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other
(trade-) marks (e.g., “Creative Commons” itself) remain with their
respective holders.

Open Educational Resource (OER)
Source code and source files are available on

GitLab free licenses

Jens Lechtenbörger Creative
Commons license CC BY-SA 4.0

No warranties are given. The license may not give you all of the permissions
necessary for your intended use.

Imprint | Privacy Policy

https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
file:///imprint.html
file:///privacy.html

41
Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

Imprint | Privacy Policy

file:///imprint.html
file:///privacy.html

