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1 Introduction

1.1 OS Plan
� OS Overview (Wk 23)

� OS Introduction (Wk 23)

� Interrupts and I/O (Wk 24)

� Threads (Wk 24)

� Thread Scheduling (Wk 25)

� Mutual Exclusion (MX) (Wk 25)

� MX in Java (Wk 26)

� MX Challenges (Wk 26)

� Virtual Memory I (Wk 27)

� Virtual Memory II (Wk 27)

� Processes (Wk 28)

� Security (Wk 28)

Figure 1: OS course plan, summer 2021

1.2 Today's Core Questions

� What can go wrong with concurrent computations?

� What is a race condition?

� How to avoid subtle programming bugs related to timing issues?

� What mechanisms does the OS provide to help?

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.
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1.3 Learning Objectives

� Recognize and explain race conditions

� (Playing Deadlock Empire helps)

� Explain notions of critical section and mutual exclusion

� Use mutexes and semaphores (and monitors after upcoming lectures) to
enforce mutual exclusion

1.4 Retrieval Practice

1.4.1 Informatik 1

You have seen this advice before. It is repeated here for emphasis:

� What are interfaces and classes in Java, what is this?

� If you are not certain, consult a textbook; these self-check questions and
preceding tutorials may help:

� https://docs.oracle.com/javase/tutorial/java/concepts/QandE/

questions.html

� https://docs.oracle.com/javase/tutorial/java/IandI/QandE/

interfaces-questions.html

1.4.2 Recall: Datenmanagement

� Give examples for dirty read and lost update anomalies.

� What is a database transaction?

� What does each of the four ACID guarantees mean?

� Explain serializability as notion of consistency.

The above is covered in this introduction to transaction processing.
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2 Race Conditions

2.1 Central Challenge: Races

Figure 2: �Ferrari Kiss� by Antoine Valentini under CC BY-SA 2.0; from �ickr

2.2 Races (1/2)

� Race (condition): a technical term

� Multiple activities access shared resources

* At least one writes, in parallel or concurrently

� Overall outcome depends on subtle timing di�erences

* �Nondeterminism� (recall Dijkstra on interrupts)

* Missing synchronization

* Bug!

� Previous picture

� Cars are activities

� Street segments represent shared resources

� Timing determines whether a crash occurs or not

� Crash = misjudgment = missing synchronization

2.3 Races (2/2)

� DBMS

� SQL commands are activities

� Database objects are shared resources

� Update anomalies indicate missing synchronization
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* Serializability requires synchronization and avoids anomalies

· E.g., ACID transactions via locking

� OS

� Threads are activities

� Variables, memory, �les are shared resources

� Missing synchronization is a bug, leading to anomalies just as in
database systems

2.4 JiTT Tasks

2.4.1 JiTT Assignment: The Deadlock Empire, Part 1

� Play �Tutorial 1,� �Tutorial 2,� and the three games for �Unsynchronized
Code� at https://deadlockempire.github.io/

� The games make use of C#

* (Which you do not need to know; the games include lots of ex-
planations, also mouse-over helps)

� General idea

� The game is about mutual exclusion and critical sections, to be
discussed next

* At any point in time just one thread is allowed to execute under
mutual exclusion inside a critical section

* If you manage to lead two threads into a critical section simul-
taneously (or, in some levels, to execute Assert(false)), you
demonstrate a race condition

� You win a game if you demonstrate a race condition

� Really, start playing now! (Nothing to submit here)

2.4.2 Transfer of Deadlock Empire

Consider the following piece of Java code (from Sec. 4.2 of [Hai19]) to sell tickets
as long as seats are available. (That code is embedded in this sample program,
which you can execute to see races yourself.)

if (seatsRemaining > 0) {

dispenseTicket();

seatsRemaining = seatsRemaining - 1;

} else displaySorrySoldOut();

Inspired by the Deadlock Empire, �nd and explain a race condition involving
the counter seatsRemaining, which leads to single tickets being sold several
times (to be revisited in exercises).
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2.5 Non-Atomic Executions

� Races generally result from non-atomic executions

� Even �single� instructions such as i += 1 are not atomic

* Execution via sequences of machine instructions

· Load variable's value from RAM

· Perform add in ALU

· Write result to RAM

� A context switch may happen after any of these machine instructions,
i.e., �in the middle� of a high-level instruction

* Intermediate results accessible elsewhere

· No isolation in the sense of ACID transactions: races, dirty
reads, lost updates

* Demo: Play a game as instructed previously

This slide highlights that even simple statements of high-level programming languages are
not executed atomically, which may be the source of race conditions.

Note that the word �atomic� is used in its literal sense here. So, an execution is not

atomic if is really consists of multiple steps.
Be careful not to confuse this with the notion of atomicity of ACID transactions. In the

ACID context, atomicity means that transactions appear to be either executed entirely or not
at all; whether they consist of multiple steps or not is not an issue.

3 Critical Sections and Mutual Exclusion

3.1 Goal and Solutions (1/3)

� Goal

� Concurrent executions that access shared resources should be iso-
lated from one another

* Cf. I in ACID transactions

� Conceptual solution

� Declare critical sections (CSs)

* CS = Block of code with potential for race conditions on shared
resources

· Cf. transaction as sequence of operations on shared data

� Enforce mutual exclusion (MX) on CSs

* At most one thread inside CS at any point in time

· This avoids race conditions

· Cf. serializability for transactions
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3.2 MX with CSs: Ticket example

Figure 3: �Interleaved execution of threads with MX for code from Sec. 4.2
of book by Max Hailperin, CC BY-SA 3.0.� by Jens Lechtenbörger under CC
BY-SA 4.0; from GitLab

1. The animation on this slide illustrates the e�ect of mutual exclusion on interleaved
executions to avoid races based on a previously shown code fragment to sell tickets
for seats. If you did not think about the JiTT assignment for that code fragment yet,
please do so now and come back afterwards. Actually, this animation may also help
you solving the JiTT assignment.

Consider two threads that simultaneously try to obtain seats, and suppose that the
code fragment is executed as critical section under mutual exclusion. How MX can
actually be enforced via locking, semaphores, or monitors is the topic of later slides.

2. T1 enters the CS �rst. Suppose its time slice runs out after the check that seats are still
remaining. Now the OS dispatches T2, which wants to execute the same CS. However,
as T1 is currently executing inside that CS and as MX is enforced for that CS, T2 is
blocked by the OS. Thus, the OS schedules another thread for execution, say T1.

3. Consequently, T1 can �nish the CS without intermediate modi�cations by any other
thread.

4. Afterwards, T2 can enter the CS, check whether seats are still available etc. In essence,
MX enforces the serial execution of CSs. On the one hand, serial executions are good
as they avoids races; on the other, they inhibit parallelism, which is generally bad for
performance.

3.3 Goal and Solutions (2/3)

� New goal

� Implementations/mechanisms for MX on CS

� Solutions, to be discussed in detail

� Locks, also called mutexes

* Cf. 2PL for database transactions

* Acquire lock/mutex at start of CS, release it at end

· Choices: Busy waiting (spinning) or blocking when lock/mutex
not free?

� Semaphores
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* Abstract datatype, generalization of locks, blocking, signaling

� Monitors

* Abstract datatype, think of Java class, methods as CS with MX

* Keyword synchronized turns Java method into CS with MX!

3.4 Challenges

� Above solutions restrict entry to CS

� Thus, they restrict access to the resource CPU

� Major synchronization challenges arise

� Starvation (related to (un-) fairness)

* Thread never enters CS

· (More generally: never receives some resource, e.g., CPU
under scheduling)

� Deadlock (discussed in later presentation)

* Set of threads is stuck

* Circular wait for additional locks/semaphores/resources/messages

� In addition, programming errors, e.g., races involving seatsRemaining

* Di�cult to locate, time-dependent

* Di�cult to reproduce, �non-determinism�

3.5 Goal and Solutions (3/3)

� Recall above loose de�nition

� MX = At most one thread inside CS at any point in time

* This avoids race conditions

� Stricter de�nitions also address deadlocks, starvation, failures

� Our de�nition: Solution ensures MX if

* At most one thread inside CS at any point in time

* Deadlocks are ruled out

� (Not our focus: Starvation does not occur)

* (E.g., requests granted under fairness guarantees such as �rst-
come �rst-serve or with �luck� based on randomness)

� ([Lam86] provides detailed discussion, also addressing failures)

4 Locking

4.1 Mutexes

Warning! External �gure not included: �Mutexes� © 2016 Julia Evans, all
rights reserved from julia's drawings. Displayed here with personal permission.
(See HTML presentation instead.)
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4.2 Locks and Mutexes

� Lock = mutex = object with methods

� lock() or acquire(): Lock/acquire/take the object

* A lock can only be lock()'ed by one thread at a time

* Further threads trying to lock() need to wait for unlock()

� unlock() or release(): Unlock/release the object

* Can be lock()'ed again afterwards

� E.g., interface java.util.concurrent.locks.Lock in Java.

Figure 4: �Figure 4.4 of [Hai17]� by Max Hailperin under CC BY-SA 3.0; con-
verted from GitHub

First of all, note that the terms �lock� and �mutex� are synonyms.
Locks (and mutexes) are special-purpose objects, which essentially have two states, namely

Unlocked and Locked, which you can see in the �gure here, along with possible state transitions
when the lock's methods lock() and unlock() are invoked. These methods are explained in the
bullet points.

When mutual exclusion (MX) is necessary to prevent races for a critical section (CS), a
lock object shared by the racing threads can be used, for example seatlock on the next slide.
To enforce MX, method lock() needs to be invoked on the lock object at the beginning of the
CS, and unlock() at the end.

When the �rst thread executes lock(), the locks's state changes from Unlocked to Locked.
If other threads try to execute lock() in state Locked, these threads get blocked until the
�rst thread executes unlock(), which changes the lock's state to Unlocked and which allows
the blocked threads to continue their locking attempts; of course, only one of them will be
successful.

The question whether the lock really changes its state from Locked to Unlocked upon
unlock() or whether it is immediately reassigned to one of the blocked threads (e.g., in FIFO
order) is a design decision, which will be revisited later in the context of the so-called convoy
problem.

4.3 Use of Locks/Mutexes

� Programming discipline required to prevent races

� Create one (shared) lock for each shared data structure

� Take lock before operating on shared data structure

� Release lock afterwards

� ([Hai19] has sample code following POSIX standard)

� Ticket example modi�ed (leading to MX behavior):
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seatlock.lock();

if (seatsRemaining > 0) {

dispenseTicket();

seatsRemaining = seatsRemaining - 1;

} else displaySorrySoldOut();

seatlock.unlock();

4.4 Quiz on MX Vocabulary

5 Semaphores

5.1 Semaphore Origin

� Proposed by Dijkstra, 1965

� Based on waiting (sleeping) for signals (wake-up calls)

* Thread waiting for signal is blocked

� Abstract data type

� Non-negative integer

* Number of available resources; 1 for MX on CPU

� Queue for blocked threads

� Atomic operations

* Initialize integer

* acquire (wait, sleep, down, P [passeren, proberen]): entry into
CS

· Decrement integer by 1

· As integer must be non-negative, block when 0

* release (signal, wakeup, up, V [vrijgeven, verlaten]): exit from
CS

· Increment integer by 1 (value may grow without bound)

· Potentially unblock blocked thread

5.2 Use of Semaphores for MX

� Programming discipline required similarly to locks

� Create semaphore for shared data structure

� acquire() before CS, release() after

� Ticket example modi�ed with seatSem initialized to 1 (leading to MX
behavior):

� (The semaphore initialized to 1 behaves exactly like a lock here)

seatSem.acquire();

if (seatsRemaining > 0) {

dispenseTicket();

seatsRemaining = seatsRemaining - 1;

} else displaySorrySoldOut();

seatSem.release();
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5.2.1 Semaphores for Capacity Control

� Semaphores initialized to other values than 1 are typically used to model
capacities

� Example from stack over�ow: bouncer in nightclub

� Nightclub has limited capacity, i.e., number of people allowed in club
at any moment: n

* Bouncer (semaphore initialized to n) makes sure that no more
than n people can be inside

* If club is full, a queue collects waiting people

� Guests (threads) call acquire() on bouncer/semaphore to enter

� Guests (threads) call release() on bouncer/semaphore to leave

� Example later on: SemaphoreBoundedBuffer

5.3 JiTT Tasks

5.3.1 The Deadlock Empire � Remarks

� The games at https://deadlockempire.github.io/ make use of C#

� What is called �monitor� in C# is not a Hoare style monitor to be dis-
cussed in the upcoming presentation

� In C#, a �monitor� needs to be (un)locked explicitly

� Whereas Hoare style monitors are locked implicitly and automatically

� Class context

� Hoare style monitors in Java

� Producer/consumer scenarios mentioned in games

* Classical synchronization problems (this presentation)

* Revisited as BoundedBu�er in Java

5.3.2 The Deadlock Empire, Part 2

Play the following games at https://deadlockempire.github.io/

� �Locks� and �Semaphores�

� Incorrect use of both, sometimes leading to deadlocks. For locks,
Enter() and Exit() represent lock() and unlock()

� �Condition Variables�

� Here, if (queue.Count == 0) is meant to avoid removal attempts
from empty queues. However, PulseAll() wakes up all waiting
(blocked) threads (similarly to notifyAll() for Java later on)
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6 Implementation Aspects

6.1 Atomic Instructions

� Typical building block for MX: Atomic machine instruction

� Several memory accesses with guarantee of isolation/no interference

� E.g., exchange, which exchanges contents of register and memory location

6.2 Mutex with Simplistic Spinlock Implementation

� Single memory location called mutex

� Value 1: unlocked

� Value 0: locked

� Operations

� unlock(): Store 1 into mutex

� lock(): Atomically check for 1 and store 0 as follows ([Hai19]):

to lock mutex:

let temp = 0

repeat

atomically exchange temp and mutex

until temp = 1

Consider a simplistic mutex implementation, where the mutex itself is represented by a
single memory location, called mutex, which can have the values 1 for unlocked and 0 for
locked. The operation lock() uses an atomic machine instruction to exchange the contents
of memory location mutex with another value (here temp, which could be a CPU register).

Please convince yourself that out of multiple threads invoking lock() concurrently on the
unlocked mutex, only the �rst one will pass the repeat loop, while subsequent ones are stuck
(or �spin�) in that loop, until the �rst thread performs an unlock operation by writing 1 into
memory location mutex.

This type of lock, where threads waiting for the release of a lock spin in a loop, is called
spinlock (to be revisited shortly), and it di�ers from locks where waiting threads are blocked
by the OS, which we assumed on earlier slides. Recall that actively waiting in a loop is also
called busy waiting as we have seen in the context of I/O polling.

Spinlocks are mainly used for low-level programming where the duration of lock periods
can be guaranteed to be short.

See [Hai19] for a cache-conscious spinlock variant (beyond scope of class).

6.3 On Spinlocks

� Spinlock: Thread spins actively in loop on CPU while waiting for lock
to be released

� Busy waiting

� Avoids overhead of scheduling and context switch coming with block-
ing locks

� Note: Spinning thread keeps CPU core busy

� No blocking by OS

� Waste of CPU resources unless lock periods are short
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6.4 Mutex with Queue

� Mutex as OS mechanism

� When lock() fails on a locked mutex, OS blocks thread

� Blocked threads are collected in queue

� No busy waiting

* Thus, CPU time not wasted for long waiting periods

* However, scheduling with its own overhead required

· Wasteful, if waiting periods are short

� Di�erent variants of unlock()

1. Unblock thread in FIFO order from queue (if one exists)

� And reassign mutex to that thread

2. Make all threads runnable without reassigning mutex

� Upcoming presentation: convoy problem and its solution

� Pseudocode in [Hai19]

6.5 Quiz on Locking

6.6 JiTT: Questions and Feedback

� What did you �nd di�cult or confusing about the contents of the presen-
tation? Please be as speci�c as possible. For example, you could describe
your current understanding (which might allow us to identify misunder-
standings), ask questions that allow us to help you, or suggest improve-
ments (maybe on GitLab). Please use the session's shared document or
MoodleOver�ow. Most questions turn out to be of general interest; please
do not hesitate to ask and answer where others can bene�t. If you cre-
ated additional original content that might help others (e.g., a new exer-
cise, an experiment, explanations concerning relationships with di�erent
courses, . . . ), please share.

7 Outlook

7.1 Producer/Consumer problems

� Classical synchronization problems, revisited in next presentation

� One or more producers

* Generate data

· Records, messages, tasks

* Place data into bu�er (shared resource)

· Two bu�er variants: unbounded or bounded

· Producer blocks, if bounded bu�er is full

� One or more consumers
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* Consume data

· Take data out of bu�er

· Consumer blocks, if bu�er is empty

� Synchronization for bu�er manipulations necessary

7.2 Use of Semaphores to Track Resources

import java.util.concurrent.Semaphore;

/*

This code is based on Figure 4.18 of the following book:

Max Hailperin, Operating Systems and Middleware � Supporting

Controlled Interaction, revised edition 1.3, 2017.

https://gustavus.edu/mcs/max/os-book/

In Figure 4.18, synchronizedList() is used, whereas here a

plain LinkedList is used, which is protected by the additional

semaphore mutex.

Also, the class here is renamed and implements a new interface.

*/

public class SemaphoreBoundedBuffer implements BoundedBuffer {

private java.util.List<Object> buffer =

new java.util.LinkedList<Object>();

private static final int SIZE = 20; // arbitrary

private Semaphore mutex = new Semaphore(1);

private Semaphore occupiedSem = new Semaphore(0);

private Semaphore freeSem = new Semaphore(SIZE);

/* invariant: occupiedSem + freeSem = SIZE

buffer.size() = occupiedSem

buffer contains entries from oldest to youngest */

public void insert(Object o) throws InterruptedException {

// Called by producer thread

freeSem.acquire();

mutex.acquire();

buffer.add(o);

mutex.release();

occupiedSem.release();

}

public Object retrieve() throws InterruptedException {

// Called by consumer thread

occupiedSem.acquire();

mutex.acquire();

Object retrieved = buffer.remove(0);

mutex.release();

freeSem.release();
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return retrieved;

}

public int size() {

return buffer.size();

}

}

8 Pointers beyond class topics

8.1 GNU/Linux: Futex

� Fast user space mutex

� No system call for single user (fastpath)

� System calls for blocking/waiting (slowpath)

� Meant as building block for libraries

� Like semaphore: Integer with up() and down()

� Assembler code with atomic instructions for integer access

� Documentation

� man futex

� PI-futex.txt

* (Topic for upcoming presentation: PI stands for priority inheri-
tance, a counter-measure against priority inversion)

8.2 Lock-free Data Structures

� Core idea: Handle critical sections without locks

� Typically based on hardware support for atomicity guarantees

� Atomic instructions as explained above

* E.g., Bw-Tree, see [LLS13]

� Transactional memory, see [LK08]

� See Section 4.9 of [Hai19]

8.3 �Safer� Programming Languages

� High-level programming languages may help with MX

� See [Jun+21] for introduction to Rust

� Strong type system allows to detect common bugs at compile time

* Thread safety (absence of race conditions) for shared data struc-
tures with compile-time checks

� Ongoing research into safety proofs

� (Besides, the OS Redox is implemented in Rust)
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8.4 Massively Parallel Programming

� For massively parallel (big data) processing in clusters or cloud environ-
ments, specialized frameworks exist

� Breaking down �large� tasks with partitioning into smaller ones that
are processed in parallel

* Smaller tasks usually independent of each other (no race condi-
tions)

* (Built-in fault tolerance with replication)

� E.g., Apache Hadoop (MapReduce), Apache Spark, Apache Flink

9 Conclusions

9.1 Summary

� Parallelism is a fact of life

� Multi-core, multi-threaded programming

� Race conditions arise

� Synchronization is necessary

� Mutual exclusion for critical section

� Locking

� Monitors

� Semaphores
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License Information

This document is part of an Open Educational Resource (OER) course on Op-
erating Systems. Source code and source �les are available on GitLab under
free licenses.

Except where otherwise noted, the work �OS05: Mutual Exclusion�,© 2017-
2021 Jens Lechtenbörger, is published under the Creative Commons license CC
BY-SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., �Creative Commons� itself) remain with their respective holders.
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