
OS06: MX in Java
*

Based on Chapter 4 of [Hai19]

Jens Lechtenbörger

Computer Structures and Operating Systems 2023

1 Introduction

1.1 OS Plan

� OS Overview (Wk 20)

� OS Introduction (Wk 21)

� Interrupts and I/O (Wk 21)

� Threads (Wk 23)

� Thread Scheduling (Wk 24)

� Mutual Exclusion (MX) (Wk 25)

� MX in Java (Wk 25)

� MX Challenges (Wk 25)

� Virtual Memory I (Wk 26)

� Virtual Memory II (Wk 26)

� Processes (Wk 27)

� Security (Wk 28)

Figure 1: OS course plan, summer 2022

1.2 Today's Core Question

� How to achieve MX with monitors in Java?

� (Also: Semaphores revisited with Java as alternative)

1.3 Learning Objectives

� Apply and explain MX and cooperation based on monitor concept in Java

*This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://oer.gitlab.io/OS/Operating-Systems-MX-Java.html
https://gitlab.com/oer/OS
https://gitlab.com/oer/OS


� Give example

� Discuss incorrect attempts

1.4 Retrieval Practice

1.4.1 Thread Terminology

1.4.2 Thread States

1.4.3 Java Threads

1.4.4 Races

1.4.5 Mutual Exclusion

Table of Contents

2 Monitors

2.1 Monitor Idea

� Monitor ≈ instance of class with methods and attributes

� Equip every object (= class instance) with a lock

� Automatically

* Call lock() when method is entered

· As usual: Thread is blocked if lock is already locked

· Thus, automatic MX

· We say that executing thread entered the monitor or ex-
ecutes inside the monitor when it has passed lock() and
executes a method

* Call unlock() when method is left

· Thread leaves the monitor

The basic idea of monitors is as follows: Think of a monitor as an instance of a special
type of class, where each instance is automatically equipped with its own lock. The run-time
system ensures that before a method of such a class is executed on a class instance (which is
this in Java), the lock for that class instance needs to be acquired.

We say that a thread that has successfully executed lock() �entered the monitor� or
�executes inside the monitor�.

Thus, monitors automatically provide MX for methods of the monitor class: If multiple
threads share the same object (with a potential for race conditions), only one of them can
execute inside the monitor at any point in time, while others are blocked.

Importantly, each object has its own lock. Thus, two threads that operate on di�erent
class instances can both acquire their di�erent locks and execute monitor methods in parallel
(without the danger of races as they do not not share resources).

The next slide explains the origin of monitors in terms of an abstract data type (instead of
the more modern �class� formulation presented here). On that slide, you also see that monitors
not only guarantee MX; in addition, they provide methods for cooperation of threads.

Subsequent slides then discuss how the monitor concept is implemented in Java with the
keyword synchronized (which activates locking of the this object as explained here in general
terms) and methods for cooperation.

2



2.2 Monitor Origin

� Monitors proposed by Hoare; 1974

� Abstract data type

� Methods encapsulate local variables

* Just like methods in Java classes

� Thread enters monitor via method

* Built-in MX: At most one thread in monitor

� In addition: Methods for cooperation

* cwait(x): Blocks calling thread until csignal(x)

· Monitor free then

* csignal(x): Starts at most one thread waiting for x

· If existing; otherwise, nothing happens

· Di�erence to semaphore: signal may get lost

3 MX in Java

3.1 Monitors in Java: Overview

� In Java, classes and objects come with built-in locks

� Which are ignored by default

� Keyword synchronized activates locks

� Automatic locking of this object during execution of method

* Automatic MX for method's body

* Useful if (large part of) body is a CS

� E.g., for sample code from [Hai19] (for which you found races previ-
ously):

public synchronized void sell() {

if (seatsRemaining > 0) {

dispenseTicket();

seatsRemaining = seatsRemaining - 1;

} else displaySorrySoldOut();

}

3.1.1 Java, synchronized, this

� Java basics, hopefully clear

� Method sell() from previous slides invoked on some object, say
theater

* Each theater has its own attribute seatsRemaining

* seatsRemaining is really this.seatsRemaining, which is the
same as theater.seatsRemaining

3

https://en.wikipedia.org/wiki/Tony_Hoare


· Inside the method, the name theater is unknown, theater
is the this object, which is used implicitly

� Without synchronized, races arise when two threads invoke sell() on
the same object theater

� With synchronized, only one of the threads obtains the lock on
theater, so races are prevented

3.1.2 Possible Sources of Confusion

� With synchronized, locks for objects are activated

� For synchronized methods, thread needs to acquire lock for this

object

� Methods cannot be locked

� Individual attributes of the this object (e.g., seatsRemaining) are not
locked

� (Which is not a problem as object-orientation recommends to en-

capsulate attributes, i.e., they cannot be accessed directly but only
through synchronized methods)

3.1.3 Self-Study Task

1. Inspect and understand, compile, and run this sample program, which
embeds the code to sell tickets, for which you found races previously.

2. Change sell() to use the monitor concept, recompile, and run again.
Observe the expected outcome.

(Nothing to submit here; maybe ask questions online.)

3.2 Java Monitors in Detail

� MX based on monitor concept

� See Java speci�cation if you are interested in details

� Every Java object (and class) comes with

� Monitor with lock (not activated by default)

* Keyword synchronized activates lock

* For method

· public synchronized methodAsCS(...) {...}

· Thread acquires lock for this object upon call (Class object
for static methods)

* Or for block

· synchronized (syncObj) {...}

· Thread acquires lock for syncObj

* First thread acquires lock for duration of method/block

4

https://gitlab.com/oer/OS/blob/master/java/TheaterEx.java
https://docs.oracle.com/javase/specs/jls/se18/html/jls-17.html


* Further threads get blocked

� Wait set (set of threads; wait() and notify(), explained later;
ignore for now)

1. Java provides all methods for mutual exclusion discussed in the previous presentation,
including the monitor concept, whose details can be found at the URL given here.

2. In essence, MX with Java is quite simple, as every Java object is equipped with a lock.
By default, however, these locks are not used. Instead, you need to use the keyword
synchronized if you want threads to acquire the locks for MX.

The simplest way to enforce MX is to declare methods operating on shared resources as
synchronized. If a thread T1 wants to execute such a synchronized method on some object,
then thread T1 will automatically try to acquire the lock for that object. If that lock has been
taken, say by thread T0, then T1 will be blocked until T0 leaves the method and releases the
lock.

Besides, you can also use other objects for synchronization if you want to turn blocks of
code into critical sections. We will not use this, however.

Finally, the Java monitor concept includes a mechanism for cooperation of threads based
on wait sets, which will be explained later.

3.3 Recall: synchronized Example

public synchronized void sell() {

if (seatsRemaining > 0) {

dispenseTicket();

seatsRemaining = seatsRemaining - 1;

} else displaySorrySoldOut();

}

� As you observed above, synchronized avoids races

� Method executed under MX

� Threads need to acquire lock on this object before executing method

� Really, it is that simple!

4 Cooperation with Monitors in Java

4.1 General Idea

� Threads may work with di�erent roles on shared data structures

� E.g., producer/consumer problems seen earlier

� Some may �nd that they cannot continue before others did their work

� The former call wait() and hope for notify() by the latter

� Cooperation (orthogonal to and not necessary for MX!)

* General monitor concept

* Wait set mentioned above and explained subsequently

5



4.2 wait() and notify() in Java

� Waiting via blocking

� wait(): thread unlocks and leaves monitor, enters wait set

* Thread enters state blocked (no busy waiting)

* Called by thread that cannot continue (without work/help of
another thread)

� Noti�cations

� notify()

* Remove one thread from wait set (if such a thread exists)

· Change state from blocked to runnable

* Called by thread whose work may help another thread to con-
tinue

� notifyAll()

* Remove all threads from wait set

· Only one can lock and enter the monitor, of course

· Only after the notifying thread has left the monitor, of course

· Overhead (may be avoidable with appropriate synchroniza-
tion objects or with semaphores as seen previously)

1. Cooperation between threads sharing resources can be managed with the methods
wait() and notify() (or notifyAll()). A thread can only invoke these methods on an
object if it has acquired the lock for that object, i.e., if it currently executes inside the
object's monitor. So, usually, you see invocations of wait and notify in synchronized
methods.

2. If a thread �nds that it cannot make use of the shared resource in the resource's current
state, it can invoke wait() to release the lock on that resource and leave its monitor.
At that point in time, the thread's state changes to blocked, and the thread is recorded
in a special data structure associated with the object, called wait set. In the wait set,
Java keeps track of all threads that have invoked wait() on the object. So, once a
thread has executed wait(), the object's lock is released, and other threads can acquire
the object's lock and modify the object's state.

3. If a thread has modi�ed the object's state in such a way that there is reason to believe
that waiting threads might now be able to continue, the thread invokes notify() on
the object, which removes one thread from the wait set and makes it runnable. When
that runnable thread is scheduled for execution later on, it can again try to enter to
monitor by locking the object; once the lock has been acquired, the thread resumes
execution after the wait() method. The method notifyAll() is an alternative to notify()
that removes all threads from the wait set, not just one. You may want to think about
advantages and disadvantage of notifying all waiting threads yourself.

5 BoundedBu�er in Java

5.1 Bounded Bu�ers

� A bu�er is a data structure to store items, requests, responses, etc.

� Lots of bu�er variants exist

� A bounded bu�er has a limited capacity

6



* E.g., a Java array or any other data structure of limited capacity

� As with any other data structure, MX is necessary when bu�ers are shared

� Subsequently, two alternative bu�er implementations with MX

* Java's monitor concept (with array as underlying, shared data
structure)

* Java Semaphore (with list as underlying, shared data structure)

5.2 Sample synchronized Java Method

// Based on Fig. 4.17 of [Hai17]

public synchronized void insert(Object o)

throws InterruptedException

// Called by producer thread

{

while(numOccupied == buffer.length)

// block thread as buffer is full;

// cooperation from consumer required to unblock

wait();

buffer[(firstOccupied + numOccupied) % buffer.length] = o;

numOccupied++;

// in case any retrieves are waiting for data, wake/unblock them

notifyAll();

}

(Part of SynchronizedBoundedBu�er.java)

5.2.1 Comments on synchronized

� Previous method in larger program: BBTest.java

� SynchronizedBoundedBuffer as shared resource

� Di�erent threads (Producer instances and Consumer instances) call
synchronized methods on that bounded bu�er

* Before methods are executed, lock of bu�er needs to be acquired

· This enforces MX for methods insert() and retrieve()

* In methods, threads call wait() on bu�er if unable to continue

· this object used implicitly as target of wait()

· Thread enters wait set of bu�er

· Until notifyAll() on same bu�er

* Note that thread classes contain neither synchronized nor wait/notify

5.3 Sample Semaphore Use in Java

import java.util.concurrent.Semaphore;

/*

This code is based on Figure 4.18 of the following book:

Max Hailperin, Operating Systems and Middleware � Supporting

7

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
https://gitlab.com/oer/OS/-/blob/master/java/SynchronizedBoundedBuffer.java
https://gitlab.com/oer/OS/blob/master/java/BBTest.java
https://gitlab.com/oer/OS/blob/master/java/Producer.java
https://gitlab.com/oer/OS/blob/master/java/Consumer.java


Controlled Interaction, revised edition 1.3, 2017.

https://gustavus.edu/mcs/max/os-book/

In Figure 4.18, synchronizedList() is used, whereas here a

plain LinkedList is used, which is protected by the additional

semaphore mutex.

Also, the class here is renamed and implements a new interface.

*/

public class SemaphoreBoundedBuffer implements BoundedBuffer {

private java.util.List<Object> buffer =

new java.util.LinkedList<Object>();

private static final int SIZE = 20; // arbitrary

private Semaphore mutex = new Semaphore(1);

private Semaphore occupiedSem = new Semaphore(0);

private Semaphore freeSem = new Semaphore(SIZE);

/* invariant: occupiedSem + freeSem = SIZE

buffer.size() = occupiedSem

buffer contains entries from oldest to youngest */

public void insert(Object o) throws InterruptedException {

// Called by producer thread

freeSem.acquire();

mutex.acquire();

buffer.add(o);

mutex.release();

occupiedSem.release();

}

public Object retrieve() throws InterruptedException {

// Called by consumer thread

occupiedSem.acquire();

mutex.acquire();

Object retrieved = buffer.remove(0);

mutex.release();

freeSem.release();

return retrieved;

}

public int size() {

return buffer.size();

}

}

5.3.1 Comments on Java Semaphore

� Java provides java.util.concurrent.Semaphore

8

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/concurrent/Semaphore.html


� Implements semaphore concept

* Constructor with integer argument to track resources

* Methods acquire() and release()

� SemaphoreBoundedBuffer implements same interface as SynchronizedBoundedBuffer

� Use whichever you want with BBTest.java

� Bounded bu�er uses three semaphores

* One (initialized to 1) acting as mutex

· Note acquire() and release() around bu�er accesses for
MX

* Other two counting occupied and free places

6 Conclusions

6.1 Summary

� Java objects can act as monitors

� Keyword synchronized

* MX for CS (method/block of code)

· No �ags, no explicit locks!

� Cooperation via wait() and notify()

Bibliography

[Hai19] Max Hailperin. Operating Systems and Middleware � Supporting Con-

trolled Interaction. revised edition 1.3.1, 2019. url: https://gustavus.
edu/mcs/max/os-book/.

License Information

This document is part of an Open Educational Resource (OER) course on Op-
erating Systems. Source code and source �les are available on GitLab under
free licenses.

Except where otherwise noted, the work �OS06: MX in Java�, © 2017-2023
Jens Lechtenbörger, is published under the Creative Commons license CC BY-
SA 4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., �Creative Commons� itself) remain with their respective holders.

9

https://gitlab.com/oer/OS/blob/master/java/BBTest.java
https://gustavus.edu/mcs/max/os-book/
https://gustavus.edu/mcs/max/os-book/
https://en.wikipedia.org/wiki/Open_educational_resources
https://gitlab.com/oer/OS
https://en.wikipedia.org/wiki/Free_license
https://lechten.gitlab.io/#me
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding

	Introduction
	OS Plan
	Today’s Core Question
	Learning Objectives
	Retrieval Practice
	Thread Terminology
	Thread States
	Java Threads
	Races
	Mutual Exclusion


	Monitors
	Monitor Idea
	Monitor Origin

	MX in Java
	Monitors in Java: Overview
	Java, synchronized, this
	Possible Sources of Confusion
	Self-Study Task

	Java Monitors in Detail
	[sec:org5d9d2b8]Recall: synchronized Example

	Cooperation with Monitors in Java
	General Idea
	wait() and notify() in Java

	BoundedBuffer in Java
	Bounded Buffers
	Sample synchronized Java Method
	Comments on synchronized

	Sample Semaphore Use in Java
	Comments on Java Semaphore


	Conclusions
	Summary


