
Web and E-Mail

Jens Lechtenbörger

Summer Term 2018

Contents

1 Introduction 1

2 Web 3

3 HTTP 4

4 Server State and Cookies 8

5 Caching 10

6 Proxies 11

7 E-Mail 12

8 Conclusions 14

1 Introduction

1.1 Learning Objectives

� Perform simple HTTP requests via telnet or gnutls-cli

� Explain the concept of �stateless servers�

� Explain constraints and advantages of caching

� Interpret E-Mail headers

� Discuss alternatives to and weaknesses of e-mail security established by
secure channels between MUA and MTA

1.2 Previously on CACS . . .

1.2.1 Communication and Collaboration

� Communication frequently takes place via the Internet

� Telephony

� Instant messaging

1

� E-Mail

� Social networks

� Collaboration frequently supported by tools using Internet technologies

� All of the above means for communication

� ERP, CRM, e-learning systems

� File sharing: Sciebo, etherpad, etc.

� Programming (which subsumes �le sharing): Git, subversion, etc.

� All of the above are instances of DSs

1.2.2 Recall: Internet Architecture

� �Hourglass design�

Figure 1: Internet Architecture with narrow waist

� IP is focal point

� �Narrow waist�

� Application independent!

* Everything over IP

� Network independent!

* IP over everything

� Today: HTTP and SMTP at application layer

2

1.3 Today's Core Questions

� What does your browser do when you enter a URI in the address bar?

� How does e-mail transfer work?

2 Web

2.1 History of the Web (1/2)

� 1945, Vannevar Bush: As we may think

� Memex for information storage

� Associative indexing (Hyperlinks)

� 1989, article by Tim Berners-Lee

� Distributed hypertext system, ��web� of notes with links�

� Initially for cooperation among physicists at CERN

� May 1991

� Distributed information system based on HTML, HTTP, and client
software at CERN

� August 1991

� Availability of CERN �les announced in alt.hypertext

* http://groups.google.com/group/alt.hypertext/msg/395f282a67a1916c

2.2 History of the Web (2/2)

� 1992, NCSA Web Server available

� National Center for Supercomputing Applications, University of Illi-
nois, Urbana-Champaigne

� 1993, Mosaic browser created at NCSA

� 1994, World Wide Web Consortium (W3C) founded by Tim Berners-Lee

� Publication of technical reports and �recommendations�

� Now

� Web 2.0, Semantic Web, cloud computing, browser as access device

3

http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm
https://www.w3.org/History/1989/proposal.html
alt.hypertext
http://groups.google.com/group/alt.hypertext/msg/395f282a67a1916c
https://www.w3.org/

2.3 WWW/Web

� Standards

� W3C (HTML 4 Speci�cation)

* �The World Wide Web (Web) is a network of information re-
sources.�

� HTTP/1.1 Speci�cation (RFC 7230)

* �The Hypertext Transfer Protocol (HTTP) is a stateless application-
level protocol for distributed, collaborative, hypertext informa-
tion systems.�

� Distributed information system

� Client-Server architecture

* Web browser (client) sends HTTP requests to Web server

� Based on

* Internet

* URIs (Uniform Resource Identi�ers, generalize URLs and URNs)

* HTTP (now)

* ((X)HTML)

3 HTTP

3.1 HTTP

� Hypertext Transfer Protocol

� HTTP/1.1, RFC 7230

* Plain text messages, discussed subsequently

� HTTP/2, RFC 7540

* Adds frame format with compression

* Adoption increasing, from 15% in July 2017 to 28% in July 2018
(as of 2018-07-15)

� Request/response protocol

� Speci�c message format

� Several access methods

� Requires reliable transport protocol

� Typically TCP/IP, port 80 (or port 443 for HTTPS)

4

https://www.w3.org/TR/html4/intro/intro.html
https://tools.ietf.org/html/rfc7230
DS02-Internet.org
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/Uniform_Resource_Name
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7540
https://w3techs.com/technologies/details/ce-http2/all/all
DS02-Internet.org
https://en.wikipedia.org/wiki/HTTPS

3.2 Excursion: Manual Connections

� HTTP (before HTTP/2) and SMTP are plain text protocols

� With encrypted variants HTTPS and SMTPS (or STARTTLS)

� Enables experiments on the command line

� Type (or copy&paste) request, see server response

� For unencrypted connections, telnet can be used (preinstalled or
available for lots of OSs)

� For encrypted connections, gnutls-cli can be used (part of GnuTLS,
which is free software)

* TLS = Transport Layer Security

· Successor to SSL

· Layer between application layer and TCP, recall Internet ar-
chitecture

· Secure channels based on asymmetric cryptography

3.2.1 telnet

� Original purpose: Login to remote host (plaintext passwords)

� Nowadays, we use Secure Shell, ssh, for that

� Still, telnet can establish arbitrary TCP connections

� telnet www.google.de 80

* (For variants without visual feedback possibly followed by ctrl-+
or ctrl-], set localecho [enter] [enter])

* GET / HTTP/1.1 [enter]

* Host: www.google.de [enter] [enter]

* (Context for above lines soon)

� telnet wi.uni-muenster.de 25

* (Revisited later on)

� Beware: Buggy telnet implementations may stop sending after �rst
line (use Wireshark to verify)

3.2.2 gnutls-cli

� Establish TLS protected TCP connection

� Alternative to telnet on previous slide

� gnutls-cli --crlf www.informationelle-selbstbestimmung-im-internet.de

* GET /Anonymes_Surfen_mit_Tor.html HTTP/1.1 [enter]

* Host: www.informationelle-selbstbestimmung-im-internet.de

[enter] [enter]

� gnutls-cli --crlf --starttls -p 25 wi.uni-muenster.de

* Type ehlo localhost, then starttls; press ctrl-d to enter TLS
mode

5

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/SMTPS
https://en.wikipedia.org/wiki/STARTTLS
https://www.gnutls.org/
../OS/Operating-Systems-00-Motivation.org
https://en.wikipedia.org/wiki/Transport_Layer_Security
../OS/Operating-Systems-11-Security.org
https://en.wikipedia.org/wiki/Secure_Shell

3.3 HTTP Messages

� Requests and responses

� Generic message format of RFC 822, 1982 (822�2822�5322)

* Originally for e-mail, extensions for binary data

· Lines end with CRLF, \r\n below

� Messages consist of

* Headers

· In HTTP always a distinguished start-line (request or status)

· Then zero or more headers

* Empty line

* Optional message body

� Sample GET request (does not have a body)

* GET /newsticker/ HTTP/1.1\r\n

Host: www.heise.de\r\n

User-Agent: Mozilla/5.0\r\n

\r\n

� Sample HTTP response to previous GET request

� HTTP/1.1 200 OK\r\n

Date: Tue, 02 Nov 2010 13:49:26 GMT\r\n

Server: Apache\r\n

Vary: Accept-Encoding,User-Agent\r\n

Content-Encoding: gzip\r\n

Content-Length: 20046\r\n

Connection: close\r\n

Content-Type: text/html; charset=utf-8\r\n

\r\n

gzip'ed HTML code as body

3.4 HTTP Methods

� Case-sensitive (capital letters)

� GET (Request for resource, see section 4.3.1)

� HEAD (Request information on resource, see section 4.3.2)

� POST (Transfers entity, see section 4.3.3)

* Annotations, postings, forms, database extensions

� PUT (Creates new resource on server, see section 4.3.4)

� DELETE (Deletes resource from server, see section 4.3.5)

� CONNECT (Establish tunnel with proxy, see section 4.3.6)

� OPTIONS (Asks for server capabilities, see section 4.3.7)

� TRACE (Tracing of messages through proxies, see section 4.3.8)

6

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322
https://en.wikipedia.org/wiki/Newline
https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7231#section-4.3.2
https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.5
https://tools.ietf.org/html/rfc7231#section-4.3.6
https://tools.ietf.org/html/rfc7231#section-4.3.7
https://tools.ietf.org/html/rfc7231#section-4.3.8

3.5 Conditional GET

� GET under conditions

� Requires (case-insensitive) request header

* (Can be used by browser to check if cached version still fresh)

* If-Modified-Since

* If-Match

* If-None-Match

� Example

� Request

* GET /Anonymes_Surfen_mit_Tor.html HTTP/1.1

Host: www.informationelle-selbstbestimmung-im-internet.de

If-None-Match: "4fc5-568ed5e21e210"

� Response

* HTTP/1.1 304 Not Modified

Date: Mon, 16 Jul 2018 08:23:07 GMT

additional headers

3.6 Sample Status Codes

� Three digits, �rst one for class of response

� 1xx: Informational - Request received, continuing process

* 100: Continue - Client may continue with request body

� 2xx: Successful - Request successfully received, understood, and ac-
cepted

* 200: OK

� 3xx: Redirection - Further action necessary to complete request

* 302: Found

* 304: Not Modi�ed

� 4xx: Client Error - Request with bad syntax or cannot be ful�lled

* 403: Forbidden

* 404: Not Found

� 5xx: Server Error - Server failed for apparently valid request

3.7 HTTP Connection Management

� Options

� Short-lived connections: Each request on separate TCP connection

� Persistent connections

* TCP connection reused for multiple HTTP requests

· HTTP/1.0: Connection: Keep-Alive

· HTTP/1.1: Persistence by default

7

Figure 2: �HTTP/1.x connection management� by Mozilla Contributors under
CC BY-SA 2.5; from MDN web docs

� Pipelined connections

* Client may send multiple requests over single TCP connection
before receiving a response

* HTTP/1.1 compliant servers support pipelining

· Not activated in browsers by default, compatibility and per-
formance problems

3.8 Review Question

� Did you execute GET requests and conditional GET requests on the com-
mand line? Any surprises?

4 Server State and Cookies

4.1 State Models

� Stateless: Server does not maintain client state

� Advantages

* State changes on server do not require client noti�cations

* Recovery (restart after server crash) �simple�: No client state to
restore

� E.g.: HTTP

* Web server forgets client after request

* No session

� Stateful: Server maintains client state

8

https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x\protect \T1\textdollar history
http://creativecommons.org/licenses/by-sa/2.5/
https://mdn.mozillademos.org/files/13727/HTTP1_x_Connections.png
https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x
https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x

� E.g., �le server with table of pairs (Client, File) for caching

* Keep track which client has current version

* Performance improvement via locality

� Recovery requires to restore consistent state

4.2 Stateful Web Applications

� HTTP is stateless

� Yet, Web applications often maintain client state

� E.g., personalized session after login

� Virtual shopping cart

� Shopping history, preferences

� Exercises in Learnweb

4.3 Session IDs

� Need identi�er to keep track of subsequent requests

� Two major variants

� Session ID embedded in dynamically generated URIs

* May hinder caching

· URI does not identify resource any longer

� Cookies

* Piece of data, sent by server S, stored by browser

* Browser includes cookies set by S for every subsequent visit of S

· Think of automatic ID card

· You may want to con�gure your browser to discard cookies
upon exit

4.4 Cookies (1/2)

� RFC 6265: HTTP State Management Mechanism

� Idea

* Client stores data sent by server

* Client sends this data with subsequent requests

· Without understanding that data at all

� Details

* Cookie is named byte string

* Server transfers cookie in Set-Cookie (2) header in response

· Set-Cookie: Version 0/Netscape and RFC 6265

· Set-Cookie2: Version 1/RFC 2965

· (JavaScript may create cookie at client)

* Client sends cookie in Cookie header in requests

9

https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc2965

4.5 Cookies (2/2)

� Cookies have name, value, optional attributes/�ags

� Expires, Max-Age

* Determine lifetime of cookie

* If both missing: �Session� cookie to be deleted when browser
exits

� Domain

* DNS domain of servers to which the cookie should be sent

� Path

* Restrict sending of cookie based on directory path

� Secure

* Should only be sent via HTTPS

� HttpOnly

* Script access restricted; XSS counter-measure

5 Caching

5.1 HTTP Caching

� HTTP caching assumptions

Figure 3: �HTTP cache types� by Mozilla Contributors under CC BY-SA 2.5;
from MDN web docs

� URI identi�es resource, stability, client-independence

� Semantic transparency

� Caching is not visible to users

� Response from cache is equivalent to hypothetical one from server

10

DS01-Distributed-Systems.org
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching\protect \T1\textdollar history
http://creativecommons.org/licenses/by-sa/2.5/
https://mdn.mozillademos.org/files/13777/HTTPCachtType.png

5.2 HTTP Caching Mechanisms

� Expiration

� Server may indicate expiration date in Expires or Cache-Control
header

� Validation

� After expiration date, cache must check whether resource still usable

� May return new expiration date

* Conditional GET (�Slow hit�)

5.3 HTTP Caching Rules

� Complex rules, lots of details

� (Some details on Cache Control header)

� Server may limit caching

� no-store, no-cache, must-revalidate

� Client may

� enforce validation

* no-cache

� forbid caching

* no-store

6 Proxies

6.1 Web Proxies

� Web proxy server is intermediary between client and server

� Acts as server to client

� Acts as client to server

6.2 Sample Proxy Applications

� Cache

� Firewall/Content �lter

� Anonymizer, e.g., Tor

� My privacy policy recommends sur�ng via Tor

� Debugging tool

� E.g., intercept and analyze app network data

� Surrogate/Reverse proxy, Content Delivery Network (CDN)

11

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Expires
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://www.torproject.org/
https://oer.gitlab.io/privacy.html

� Replicated contents, inbound messages intercepted and redirected,
e.g.:

* Load balancing

* Geographical diversity (reduced latency, increased availability)

6.3 Review Questions

� What is a stateless protocol? Given that HTTP is a stateless protocol,
how can lots of applications that apparently require state be implemented
on top of HTTP?

� Where are HTTP caches typically located? What impact might HTTPS
have on caching?

7 E-Mail

7.1 E-Mail Basics

� Among oldest Internet applications

� Message format

� RFC 822 seen above

� Extended with Multipurpose Internet Mail Extensions (MIME)

* Content-Type (type of data contained in message)

* Content-Transfer-Encoding (how data in message body is en-
coded)

� Plaintext messages

� E-mail is like postcard, written with erasable pencil

* Neither con�dentiality nor integrity

� Learn self-defense, use GnuPG if you don't like this

* SSL/TLS insu�cient approach, recall end-to-end security

7.2 Message Transfer

� Terminology

� Mail User Agent (MUA): Your mail reader

* E.g., browser, Thunderbird, Emacs

� Mail Transfer Agent (MTA): Mail server/daemon

* E.g., sendmail, exim, post�x

� Simple Mail Transfer Protocol, 1982 (SMTP, RFC 821�2821�5321)

� Outgoing messages, MUA-to-MTA, MTA-to-MTA

* Plaintext (TCP/IP, port 25)

12

DS01-Distributed-Systems.org
https://en.wikipedia.org/wiki/Multipurpose_Internet_Mail_Extensions
../OS/Operating-Systems-11-Security.org
../OS/Operating-Systems-11-Security.org
../OS/Operating-Systems-11-Security.org
https://tools.ietf.org/html/rfc5321

Figure 4: Hop-to-hop security of e-mail

7.3 SMTP

telnet wi 25

Trying 128.176.159.139...

Connected to wi.uni-muenster.de.

Escape character is '\^]'.

220 wi-vm700.wi1.uni-muenster.de Microsoft ESMTP MAIL Service ready at Tue, 27 Oct 2009 11:22:11 +0100

HELO mouse.nix

250 wi-vm700.wi1.uni-muenster.de Hello [128.176.159.107]

MAIL From: micky@mouse.nix

250 2.1.0 Sender OK

RCPT To: lechten@wi.uni-muenster.de

250 2.1.5 Recipient OK

DATA

354 Start mail input; end with <CRLF>.<CRLF>

Received: from mx1.disney.com ([192.195.66.20]) by smtp.mouse.nix Super Duper SMTP Server; Tue, 27 Oct 2009 11:19:17 +0100

To: 42@universe.com

From: micky@mouse.nuix

Subject: Don't panic

Somebody Else's Problem! (This is the message body after the empty

line. Note that headers preceding the empty line have also been

entered manually. They are ignored by SMTP, but displayed to user.)

.

250 2.6.0 <b13a2a36-f56b-43ec-ad81-41ec44190e6a@wi-vm700.wi1.uni-muenster.de> Queued mail for delivery

7.4 SMTP MUA Header

Microsoft Mail Internet Headers Version 2.0

Received: from wi-vm700.wi1.uni-muenster.de ([128.176.158.92]) by wi-vmail2005.wi1.uni-muenster.de with Microsoft SMTPSVC(6.0.3790.3959); Tue, 27 Oct 2009 11:22:35 +0100

Received: from mouse.nix (128.176.159.107) by wi-vm700.wi1.uni-muenster.de (128.176.159.139) with Microsoft SMTP Server id 8.1.375.2; Tue, 27 Oct 2009 11:22:28 +0100

Received: from mx1.disney.com ([192.195.66.20]) by smtp.mouse.nix Super Duper SMTP Server; Tue, 27 Oct 2009 11:19:17 +0100

To: 42@universe.com

13

From: <micky@mouse.nuix>

Subject: Don't panic

MIME-Version: 1.0

Content-Type: text/plain

Message-ID: <b13a2a36-f56b-43ec-ad81-41ec44190e6a@wi-vm700.wi1.uni-muenster.de>

Return-Path: micky@mouse.nix

Date: Tue, 27 Oct 2009 11:22:28 +0100

X-OriginalArrivalTime: 27 Oct 2009 10:22:35.0473 (UTC) FILETIME=[66C35410:01CA56EF]

7.5 Review Questions

� Who will �nd the previous e-mail in his inbox?

� How do you expect it to look like?

� What parts of header data are trustworthy (to what degree)?

8 Conclusions

8.1 Summary

� Web browsers and servers talk HTTP

� Simple message format

� Stateless request/response protocol

* State via cookies

� Di�erent connection types

� Caching for performance

� E-Mail transferred via SMTP

8.2 Outlook

� HTTP used for various applications

� Web services

* SOAP messages

� Ad-hoc request/reply protocols

� REST

� Representational State Transfer

� Software architecture for distributed hypermedia systems

* Generalization of Web

* De�ning constraints

· Client/Server

· Stateless

· Cacheable

14

· Uniform interface, may use: URIs, MIME types, HTTP
methods

· Layered System

· (Code on demand)

License Information

Source code and source �les for this presentation are available on GitLab under
free licenses.

Except where otherwise noted, this work, �Web and E-Mail�, is © 2018 by
Jens Lechtenbörger, published under the Creative Commons license CC BY-SA
4.0.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use.

In particular, trademark rights are not licensed under this license. Thus,
rights concerning third party logos (e.g., on the title slide) and other (trade-)
marks (e.g., �Creative Commons� itself) remain with their respective holders.

15

https://gitlab.com/oer/DS
https://en.wikipedia.org/wiki/Free_license
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding
https://creativecommons.org/licenses/by-sa/4.0/#deed-understanding

	Introduction
	Web
	HTTP
	Server State and Cookies
	Caching
	Proxies
	E-Mail
	Conclusions

