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1 Introduction

1.1 Learning Objectives

� Explain �distributed system� and related major notions

� De�nition, examples, goals and challenges

� Basic scalability techniques

� Logical time, consistency, consensus

� Contrast synchronous and asynchronous distributed systems

� Compute vector timestamps for events in asynchronous systems and rea-
son about consistency

1.2 Context for Communication and Collaboration Sys-

tems

� From a technical perspective, CACSs are distributed systems.

� This presentation is part of four sessions demonstrating more technical
aspects of CACSs.

� Here: Distributed systems (DSs) in general

� Previously: Git as sample DS

� Upcoming

* Internet as fundamental infrastructure for DSs

* Web and e-mail as sample distributed applications
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1.3 Communication and Collaboration

� Communication frequently takes place via the Internet

� Telephony

� Instant messaging

� E-Mail

� Social networks

� Collaboration frequently supported by tools using Internet technologies

� All of the above means for communication

� ERP, CRM, e-learning systems

� File sharing: Sciebo, etherpad, etc.

� Programming (which subsumes �le sharing): Git, subversion, etc.

� All of the above are instances of DSs

1.4 General Importance of DSs

� DSs are everywhere

� Decentralized, heterogeneous, evolving

� Variety of applications

� Variety of physical networks and devices

* Cloud computing, browser as access device

� IT permeates our life

� Internet of Things (IoT)

� From smart devices to smart cities

� How does that really work?

� Complexity? Functionality?

� Security? Privacy?

2 Distributed Systems

2.1 De�nitions

� A distributed system (DS) is . . .

� Leslie Lamport:

�one in which the failure of a computer you didn't even know existed
can render your own computer unusable�

* (Lamport is Turing Award winner and (co-) author of seminal
papers cited in this presentation)

� Tanenbaum and van Steen [TS07]: �a collection of independent com-
puters that appears to its users as a single coherent system�

� Coulouris et al. [Cou+11]: �a system in which hardware and soft-
ware components located at networked computers communicate and
coordinate their actions only by passing messages�
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Figure 1: �Internet of Things� by Wilgengebroed on Flickr under CC BY 2.0;
from Wikimedia

Figure 2: �Photo of Leslie Lamport� under CC0 1.0; from Wikimedia
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2.2 Internet vs Web

� (Preview on upcoming sessions)

� The Internet is a network of networks

* Connectivity for heterogeneous devices

* Various protocols

· IPv4 and IPv6 for host-to-host connectivity

* TCP and UDP for process-to-process connectivity (e.g., pro-
cess of Web browser talks with remote process of Web server)

· TCP: Reliable full-duplex byte streams

· UDP: Unreliable message transfer

� The Web is an application using the Internet

* Clients and servers talking HTTP over TCP/IP

· E.g., GET requests asking for HTML pages

· Web servers provide resources to Web clients (browsers, apps)

� Internet and Web are and contain DSs

2.3 Technical DS Challenges

� No shared memory but message passing

� Concurrency

� Autonomy and heterogeneity

� Neither global clock nor global state

� Independent failures

� Hostile environment, safety vs security

Recall that in non-distributed systems, within a process its threads share an address
space, and processes may share selected regions of memory, which allows them to share data
structures as well as to coordinate and cooperate with little overhead. In distributed systems,
such sharing and cooperation relies on message passing, adding additional complexity and
latency.

Also recall that even in non-distributed systems, concurrency may lead to race conditions,
asking for mutual exclusion (MX) and raising various MX related challenges. Clearly, such
challenges will also arise in DSs, but they are aggravated by several facts. First, di�erent
parts of a system may be run by di�erent autonomous organizations with di�erent goals and
di�erent choices concerning hardware, software, and cooperation. Thus, heterogeneity is to
be expected and needs to be overcome. Second, we will see that it is already di�cult (or
even impossible) to agree on such seemingly simple facts as the current time, which led to
the development of logical time to avoid the need for globally synchronized time. Similarly,
it should not come as a surprise that with multiple autonomous parts, no single party exists
that could tell the current global state of a DS. Moreover, di�erent parts of a DS may fail
at any point in time (e.g., due to power outage, hardware failure, bugs), but they may also
be attacked at any point in time, bringing all issues of single systems related to safety and
security to the table.

4

https://en.wikipedia.org/wiki/Internet
../OS/Operating-Systems-08-Memory-I.org
../OS/Operating-Systems-03-Threads.org
../OS/Operating-Systems-11-Security.org
../OS/Operating-Systems-08-Memory-I.org
../OS/Operating-Systems-08-Memory-I.org
../OS/Operating-Systems-08-Memory-I.org
../OS/Operating-Systems-05-MX.org
../OS/Operating-Systems-05-MX.org
../OS/Operating-Systems-07-MX-Challenges.org
../OS/Operating-Systems-11-Security.org
../OS/Operating-Systems-11-Security.org


2.4 DS Goals

� Make resources accessible

� E.g., printers, �les, communication and collaboration

� Openness

� Accepted standards, interoperability

� Various distribution transparencies

� Scalability

(Source: [TS07])

2.4.1 Distribution Transparencies

� Transparency = Invisibility (hide complexity)

� Sample selection of transparencies from ISO/ODP [FLM95]

� Location t.: clients need not know physical server locations

� Migration t.: clients need not know locations of objects, which can
migrate between servers

� Replication t.: clients need not know if/where objects are replicated

� Failure t.: (partial) failures are hidden from clients

2.4.2 Scalability

� Dimensions of scale

� Numerical: Numbers of users, objects, services

� Geographical: Distance over which system is scattered

� Administrative: Number of organizations with control over system
components

� Typical scalability techniques

� Replication, caching, partitioning

� (Scale up vs out)

(Based upon: [Neu94])
As a side note, scaling of hardware comes in two variants:

1. Scale-up (also called vertical scaling), which means to upgrade given hardware (e.g., to
add more RAM or more CPU cores)

� It should be obvious that the potential for scaling up is limited.

2. Scale-out (also called horizontal scaling), which means to add additional machines,
often in the form of o�-the-shelf PC hardware

� Here, the potential for scaling out is essentially unlimited.

� Typically, scale-out is used in combination with partitioning and replication to
be explained next.
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2.4.3 Replication

� To replicate = to copy to multiple machines/nodes

� Copies (or nodes managing them) are called replicas

� E�ects

� Increased availability

* System usable as long as �enough� replicas available

� Reduced latency

* Use local or nearby replica

� Increased throughput

* Distribute/balance load among replicas

� Challenge: Keep replicas in sync (consistent)

� Consensus required

2.4.4 Caching

� To cache = to save (intermediate) results close to client

� Temporary form of replication

� E�ects

� Reduced load on server

� Increased availability and throughput as well as reduced latency as
with replication

� Challenge: Keep cache contents up to date

2.4.5 Partitioning

� To partition = to spread data or services among multiple machines/nodes

� Each node responsible for subset

� (Sharding = partitioning in shared-nothing architecture)

� E�ects

� Reduced availability (each node is additional point of failure)

� Reduced latency and increased throughput

* Each node operates on (small) subset

* Nodes operate in parallel

2.5 Review Question

Prepare an answer to the following question

� How are replication, caching, and partitioning related to scalability of
distributed systems?
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3 Models

3.1 System Models

� Distributed systems share important properties

� Common design challenges

� Models capture properties and design challenges

� Di�erent types of models

* Physical models

· Computers, devices, and their interconnections

* Architectural models

· Entities (e.g., process, object, component), their roles and
relationships (e.g., client, server, peer)

* Fundamental models

· E.g., interaction, consistency, security

� Abstract, simpli�ed description of relevant aspects

* With di�erent layers of abstraction (next slide)

(Source: [Cou+11])

3.2 Layering

� Use abstractions to hide complexity

� Abstractions naturally lead to layering

� General technique in Software Engineering and Information Systems

� Alternative abstractions at each layer

* Abstractions speci�ed by standards/protocols/APIs

� Thus, problem at hand is decomposed into manageable components

� Design becomes (more) modular

3.2.1 Hard- and Software Layers

Figure 3: �Figure 1.2 of [Hai17]� by Max Hailperin under CC BY-SA 3.0; con-
verted from GitHub
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� OS provides API that hides hardware speci�cs

� Middleware provides API that hides OS speci�cs

� (Distributed) Applications use middleware API

3.2.2 Middleware

� Software layer for distributed systems

� Hide heterogeneity

� Provide convenient programming model

* Typical building blocks

· Remote method/procedure calls

· Group communication

· Event noti�cation

· Placement, replication, partitioning

· Transactions

· Security

� Examples

� ONC/Sun RPC, CORBA, Java RMI

� Web services via Service Oriented Architecture (SOA) or REST

(Based upon: [Cou+11])

3.2.3 Layered Network Models

� Upcoming session: Layering as core mechanism of network models

� ISO OSI Reference model with 7 layers

� Internet model with 4 layers

4 Time and Consistency

4.1 Clocks

� Every computer with own internal clock

� Used for local timestamps

� Every internal clock with own clock drift rate

� Clocks vary signi�cantly unless corrections are applied

� Di�erent correction approaches

� Obtain time from external source with accuracy guarantee

* GPS, NTP

� Alternatively, use logical time
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Clocks are used to measure passing of time. To that end, clocks produce timestamps,
which can be compared against each other to �gure out what events happened before or after
other events. Clearly, that can only work if clocks used at di�erent places produce (nearly)
the same timestamps when read at the same point in time. This slide mentions clock drift
as major challenge of physical clocks, correction approaches to address that challenge, and
logical time as alternative, which is presented in more detail on later slides.

Before continuing it may be worthwhile to think about what events can be ordered via
timestamps. While we may assume time to be totally ordered, under relativistic e�ects that
turns out not to be the case: We may not be able to decide for two events which of them
happened before the other (if any). So even in the real world, time only provides a partial
order for events.

As we will see, in DSs frequently logical clocks are used to assign timestamps to events,
and those also only provide a partial order for events. Some pairs of events remain unordered,
in which case they are concurrent. Often, unordered actions result in arbitrary or even incon-
sistent outcomes, which points to a need for (a) mechanisms to detect concurrent events (and
vector clocks provide one such mechanism) and (b) mechanisms to reach consensus about the
desired �nal outcome, both of which are discussed subsequently.

4.2 Assumptions on Clocks and Timing

� Two extremes

� Asynchronous

* Nothing is known about relative timing

� Synchronous

* Time is under control, di�erent processes can proceed in lock-
step

� April 2018, HUYGENS, [Gen+18]: Time synchronization within tens of
nanoseconds based on machine learning

� (1 Nanosecond = 10-9 s)

4.2.1 Asynchronous Distributed System

� Completely asynchronous [FLP85]

� No assumptions about

* relative speeds of processes,

* time delay in delivering messages,

* clock drift.

� Thus,

* algorithms based on timeouts cannot be used,

* impossibility to tell whether some process has died or is slow.

� Fits the Internet

� Uncontrolled resource sharing implies unbounded delays.

� Solutions for asynchronous systems also work for synchronous ones.
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4.2.2 Synchronous Distributed System

� Has known time bounds for

� execution of process steps,

� transmission of messages,

� clock drift rates.

� Major strength

� Algorithms can proceed within rounds.

* For every process, a de�ned behavior per round exists.

� Timeouts can be used to detect failures.

4.3 Logical Time

� Key insight of Lamport [Lam78]

� Events can be ordered via �happened before� relation

* Without reference to physical clock

* Giving rise to partial order of logical timestamps

� Happened before, �

1. Each node/process knows order of local events

� Logical clock produces increasing non-negative integers as times-
tamps

(a) Sending of message, event s, must have happened before receipt
of that message, event r, denoted by: s � r

(b) Transitivity rule: If a � b and b � c then a � c

4.3.1 Sample Lamport Timestamps

� Three processes: P1, P2, P3

� Each process with local clock (initially 0)

* Clock incremented for each event (including send/receive)

� Diagonal arrows represent messages

* Message includes timestamp of sender

* Receiver computes maximum of sender's and own timestamp,
increments result

The graph shown here contains processes P1, P2, and P3 and events occurring in the
context of these processes. Time progresses from left to right, and event eij occurs in the
context of process P{i}. Sample events might indicate completion some algorithmic steps,
interaction with I/O, or communication of messages.

The processes are supposed to be part of one DS, but �live� on separate machines. Each
machine has its own Lamport clock to produce Lamport timestamps, which are indicated
underneath the events.
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Figure 4: Lamport timestamps for sample events

Figure 5: Lamport timestamps for sample events
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4.3.2 Lamport Timestamp Properties

� Consider events e and f

� Let l(e) and l(f) denote their Lamport timestamps

� If e � f then l(e) < l(f)

* E.g., e11 � e32 and 1 = l(e11) < l(e32) = 4

� However, if l(e) < l(f) then we cannot conclude anything

* E.g., e32 �last� event but not largest timestamp (4 smaller than
several other timestamps)

Intuitively, this slide states that

1. on the positive side the happened-before relation is embedded in Lamport timestamps,
but

2. on the negative side, one characteristic of �real� timestamps is missing: Lamport times-
tamps do not (always) allow us to identify concurrent events.

Vector clocks, presented next, overcome this limitation.

4.3.3 Vector Clocks

Figure 6: Vector timestamps for sample events

� Vector clock timestamp = vector of logical timestamps

� Roots in [Par+83], see [RS95] for survey

� One component per location

* Incremented locally

� �Merge� of vectors when message received

* Component-wise max, followed by local increment
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Figure 7: Vector timestamps for sample events

4.3.4 Vector Clocks and Happened Before

� Consider events e and f

� Let v(e) and v(f) denote their vector timestamps

� e � f if and only if v(e) < v(f)

* (Here, �<� is component-wise comparison)

� Con�icts/concurrency visible: incomparable vectors

� Actions at di�erent locations without taking all previous events into
account (e.g., e23 vs e14; merged at e15)

Think about a group exercise assigned to 3 students, namely P1, P2, and P3. In this
graph, P1 and P2 start working on a solution in parallel, adding paragraphs to their own,
initially empty documents, while P3 is idle.

After adding their �rst individual paragraphs, both P1 and P2 send their partial solutions
(with incomparable timestamps, indicating concurrent/con�icting/unsynchronized work) to
P3: When the message from P1 arrives, P3 does not have to do anything special, because
the received message has a larger timestamp (which is (0, 0, 2)) than his own (all zeros),
indicating that the received message covers all own prior knowledge (which was nothing at
all).

When the message from P2 arrives, however, P3 sees an incomparable timestamp (neither
of the vectors (1, 0, 2) and (0, 2, 0) is larger than the other). This tells P3 that P1 and P2
worked independently, possibly producing con�icting partial solutions. Now, P3 needs to look
at both versions and decide how to merge them. If P3 is lucky, P1 and P2 worked on di�erent
sub-tasks, so �merge� would just mean �copy&paste� into a single document; otherwise, P3
might really need to work. Regardless of how this merge is done, afterwards P3 produces the
new timestamp (2, 2, 2), which is larger than all other timestamps P3 is aware of, indicating
that all prior versions have been integrated.

If you are interested how vector clocks are used at Amazon to manage shopping carts, I
recommend that you read this article: [DeC+07]
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4.3.5 Review Questions

Prepare answers to the following questions

� Why are Lamport timestamps not su�cient to identify concurrent events?

� How could a continuation of the sample scenario for vector clocks look like
such that all shown events are taken into account at all processes? How
would the resulting timestamps look like?

4.4 Consistency

� Lots of di�erent notions of consistency, e.g.:

� �C� in ACID transactions: Integrity constraints satis�ed

� �I� in ACID transactions: Serializability

� All replicas have same value

* One formal criterion is linearizability

� Eventual consistency: If no updates occur for some time, all repli-
cas converge to the same value

* Vector timestamps to detect inconsistency

� Client-centric vs data-centric consistency: See text books

� Consistency requires distributed consensus/agreement

� Next slide

4.5 Consensus

Informal Statement

� Set of (distributed) processes needs to agree on value after some processes
proposed values.

� E.g.:

� Who owns a lock?

� Who is the new master server after a crash of the old one?

� Who owns a particular Bitcoin?

4.5.1 Byzantine Generals

� Famous consensus example: Byzantine generals problem by Lamport,
Shostak, Pease (1982) [LSP82]

� Three or more, possibly treacherous, generals need to agree whether
to attack or to retreat

� Commander issues order, lieutenants must decide

* Treacherous commander may issue contradicting orders to lieu-
tenants
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* Treacherous lieutenants forward contradicting information to oth-
ers

� If not all parties reach the same decision (consensus), the attack fails

� Nowadays, �Byzantine failure� is a standard term

� Arbitrary failure/misbehavior (hardware, software, attacks)

4.5.2 Results on Consensus

� Milestone results; N processes, f of them faulty

1. [PSL80], synchronous systems: Solutions only if N ≥ 3f + 1.

2. [FLP83; FLP85], asynchronous systems: When f ≥ 1, consensus
cannot be guaranteed.

3. [Lam98] (submitted 1990): Paxos algorithm for consensus in asyn-
chronous systems

� State machine replication

* [Lam98]: �It does not tolerate arbitrary, malicious failures,
nor does it guarantee bounded-time response.�

4. [CL99]: PBFT with digital signatures, N ≥ 3f + 1

5. [Bur06]: Chubby service (locking, �les, naming)

� Implementing Paxos at heart of Google's infrastructure

5 Conclusions

5.1 Summary

� Distributed systems are everywhere

� Internet as core infrastructure

� Networked machines coordinated with messages

� Various challenges and corresponding techniques

� Asynchronous distributed systems are built without global time

� Instead, logical timestamps, vector clocks

� Consensus is standard requirement in lots of scenarios

* Yet, consensus is hard in presence of failures

5.2 A Di�erent Summary

Warning! External �gure not included: �Distributed systems� under © 2016
Julia Evans, all rights reserved; from julia's drawings
(See HTML presentation instead.)
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5.3 Concluding Questions

� Merge your answers to the following question into our Etherpad or ask
them online (Riot or Learnweb)

� What did you �nd di�cult or confusing about the contents of the presen-
tation? Please be as speci�c as possible. For example, you could describe
your current understanding (which might allow us to identify misunder-
standings), ask questions that allow us to help you, or suggest improve-
ments (ideally by creating an issue or pull request in GitLab).
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